88 research outputs found

    Use of a managed solitary bee to pollinate almonds : population sustainability and increased fruit set

    Get PDF
    Osmia spp. are excellent orchard pollinators but evidence that their populations can be sustained in orchard environments and their use results in increased fruit production is scarce. We released an Osmia cornuta population in an almond orchard and measured its population dynamics, as well as visitation rates and fruit set at increasing distances from the nesting stations. Honeybees were 10 times more abundant than O. cornuta. However, the best models relating fruit set and bee visitation included only O. cornuta visitation, which explained 41% and 40% of the initial and final fruit set. Distance from the nesting stations explained 27.7% and 22.1% of the variability in initial and final fruit set. Of the 198 females released, 99 (54.4%) established and produced an average of 9.15 cells. Female population growth was 1.28. By comparing our results with those of previous O. cornuta studies we identify two important populational bottlenecks (female establishment and male-biased progeny sex ratios). Our study demonstrates that even a small population of a highly effective pollinator may have a significant impact on fruit set. Our results are encouraging for the use of Osmia managed populations and for the implementation of measures to promote wild pollinators in agricultural environments

    Chronic oral exposure to field-realistic pesticide combinations via pollen and nectar : effects on feeding and thermal performance in a solitary bee

    Get PDF
    Pesticide use is one of the main causes of pollinator declines in agricultural ecosystems. Traditionally, most laboratory studies on bee ecotoxicology test acute exposure to single compounds. However, under field conditions, bees are often chronically exposed to a variety of chemicals, with potential synergistic effects. We studied the effects of field-realistic concentrations of three pesticides measured in pollen and nectar of commercial melon fields on the solitary bee Osmia bicornis L. We orally exposed females of this species throughout their life span to 8 treatments combining two neonicotinoid insecticides (acetamiprid, imidacloprid) and a triazole fungicide (myclobutanil) via pollen and sugar syrup. We measured pollen and syrup consumption, longevity, ovary maturation and thermogenesis. Pesticide intake was three orders of magnitude higher via syrup than pollen. At the tested concentrations, no synergistic effects emerged, and we found no effects on longevity and ovary maturation. However, all treatments containing imidacloprid resulted in suppressed syrup consumption and drastic decreases in thoracic temperature and bee activity. Our results have important implications for pesticide regulation. If we had measured only lethal effects we would have wrongly concluded that the pesticide combinations containing imidacloprid were safe to O. bicornis. The incorporation of tests specifically intended to detect sublethal effects in bee risk assessment schemes should be an urgent priority. In this way, the effects of pesticide exposure on the dynamics of bee populations in agroecosystems will be better assessed

    Immunosuppression response to the neonicotinoid insecticide thiacloprid in females and males of the red mason bee Osmia bicornis L.

    Get PDF
    Solitary bees are frequently exposed to pesticides, which are considered as one of the main stress factors that may lead to population declines. A strong immune defence is vital for the fitness of bees. However, the immune system can be weakened by environmental factors that may render bees more vulnerable to parasites and pathogens. Here we demonstrate for the first time that field-realistic concentrations of the commonly used neonicotinoid insecticide thiacloprid can severely affect the immunocompetence of Osmia bicornis. In detail, males exposed to thiacloprid solutions of 200 and 555 µg/kg showed a reduction in hemocyte density. Moreover, functional aspects of the immune defence - the antimicrobial activity of the hemolymph - were impaired in males. In females, however, only a concentration of 555 µg/kg elicited similar immunosuppressive effects. Although males are smaller than females, they consumed more food solution. This leads to a 2.77 times higher exposure in males, probably explaining the different concentration thresholds observed between the sexes. In contrast to honeybees, dietary exposure to thiacloprid did not affect melanisation or wound healing in O. bicornis. Our results demonstrate that neonicotinoid insecticides can negatively affect the immunocompetence of O. bicornis, possibly leading to an impaired disease resistance capacity

    Combined exposure to sublethal concentrations of an insecticide and a fungicide affect feeding, ovary development and longevity in a solitary bee

    Get PDF
    Pollinators in agroecosystems are often exposed to pesticide mixtures. Even at low concentrations, the effects of these mixtures on bee populations are difficult to predict due to potential synergistic interactions. In this paper, we orally exposed newly emerged females of the solitary bee Osmia bicornis to environmentally realistic levels of clothianidin (neonicotinoid insecticide) and propiconazole (fungicide), singly and in combination. The amount of feeding solution consumed was highest in bees exposed to the neonicotinoid, and lowest in bees exposed to the pesticide mixture. Ovary maturation and longevity of bees of the neonicotinoid and the fungicide treatments did not differ from those of control bees. By contrast, bees exposed to the pesticide mixture showed slow ovary maturation and decreased longevity. We found a synergistic interaction between the neonicotinoid and the fungicide on survival probability. We also found an interaction between treatment and emergence time (an indicator of physiological condition) on longevity. Longevity was negatively correlated to physiological condition only in the fungicide and the mixture treatments. Delayed ovary maturation and premature death imply a shortened nesting period (highly correlated to fecundity in Osmia). Our findings provide a mechanism to explain the observed dynamics of solitary bee populations exposed to multiple chemical residues in agricultural environments

    Bees exposed to climate change are more sensitive to pesticides

    Get PDF
    Altres ajuts: acords transformatius de la UABBee populations are exposed to multiple stressors, including land-use change, biological invasions, climate change, and pesticide exposure, that may interact synergistically. We analyze the combined effects of climate warming and sublethal insecticide exposure in the solitary bee Osmia cornuta. Previous Osmia studies show that warm wintering temperatures cause body weight loss, lipid consumption, and fat body depletion. Because the fat body plays a key role in xenobiotic detoxification, we expected that bees exposed to climate warming scenarios would be more sensitive to pesticides. We exposed O. cornuta females to three wintering treatments: current scenario (2007-2012 temperatures), near-future (2021-2050 projected temperatures), and distant-future (2051-2080). Upon emergence in spring, bees were orally exposed to three sublethal doses of an insecticide (Closer, a.i. sulfoxaflor; 0, 4.55 and 11.64 ng a.i./bee). We measured the combined effects of wintering and insecticide exposure on phototactic response, syrup consumption, and longevity. Wintering treatment by itself did not affect winter mortality, but body weight loss increased with increasing wintering temperatures. Similarly, wintering treatment by itself hardly influenced phototactic response or syrup consumption. However, bees wintered at the warmest temperatures had shorter longevity, a strong fecundity predictor in Osmia. Insecticide exposure, especially at the high dose, impaired the ability of bees to respond to light, and resulted in reduced syrup consumption and longevity. The combination of the warmest winter and the high insecticide dose resulted in a 70% longevity decrease. Smaller bees, resulting from smaller pollen-nectar provisions, had shorter longevity suggesting nutritional stress may further compromise fecundity in O. cornuta. Our results show a synergistic interaction between two major drivers of bee declines, and indicate that bees will become more sensitive to pesticides under the current global warming scenario. Our findings have important implications for pesticide regulation and underscore the need to consider multiple stressors to understand bee declines
    corecore