11 research outputs found

    Mixed messages from benthic microbial communities exposed to nanoparticulate and ionic silver: 3D structure picks up nano-specific effects, while EPS and traditional endpoints indicate a concentration-dependent impact of silver ions

    Get PDF
    Silver nanoparticles (AgNP) are currently defined as emerging pollutants in surface water ecosystems. Whether the toxic effects of AgNP towards freshwater organisms are fully explainable by the release of ionic silver (Ag+) has not been conclusively elucidated. Long-term effects to benthic microbial communities (periphyton) that provide essential functions in stream ecosystems are unknown. The effects of exposure of periphyton to 2 and 20 μg/L Ag+ (AgNO3) and AgNP (polyvinylpyrrolidone stabilised) were investigated in artificial indoor streams. The extracellular polymeric substances (EPS) and 3D biofilm structure, biomass, algae species, Ag concentrations in the water phase and bioassociated Ag were analysed. A strong decrease in total Ag was observed within 4 days. Bioassociated Ag was proportional to dissolved Ag indicating a rate limitation by diffusion across the diffusive boundary layer. Two micrograms per liter of AgNO3 or AgNP did not induce significant effects despite detectable bioassociation of Ag. The 20-μg/L AgNO3 affected green algae and diatom communities, biomass and the ratio of polysaccharides to proteins in EPS. The 20-μg/L AgNO3 and AgNP decreased biofilm volume to about 50 %, while the decrease of biomass was lower in 20 μg/L AgNP samples than the 20-μg/L AgNO3 indicating a compaction of the NP-exposed biofilms. Roughness coefficients were lower in 20 μg/L AgNP-treated samples. The more traditional endpoints (biomass and diversity) indicated silver ion concentration-dependent effects, while the newly introduced parameters (3D structure and EPS) indicated both silver ion concentration-dependent effects and effects related to the silver species applied

    Influence of Microplastics on Microbial Structure, Function, and Mechanical Properties of Stream Periphyton

    Get PDF
    Periphyton is a freshwater biofilm composed of prokaryotic and eukaryotic communities that occupy rocks and sediments, forming the base of the food web and playing a key role in nutrient cycling. Given the large surface that periphyton comprises, it may also act as a sink for a diverse range of man-made pollutants, including microplastics (MP). Here we investigated the effect of 1-4 mu m and 63-75 mu m sized, spherical polyethylene MP with native and ultraviolet (UV)-weathered surface on developing natural stream periphyton communities over 28 days. In order to ensure proper particle exposure, we first tested MP suspension in water or in water containing either Tween 80, extracellular polymeric substances - EPS, fulvic acids, or protein. We found the extract of EPS from natural periphyton to be most suitable to create MP suspensions in preparation of exposure. Upon exposure, all tested types of MP were found to be associated with the periphyton, independent of their size and other properties. While biomass accrual and phenotypic community structure of the photoautotrophs remained unchanged, the prokaryotic and eukaryotic communities experienced a significant change in composition and relative abundances. Moreover, alpha diversity was affected in eukaryotes, but not in prokaryotes. The observed changes were more prominent in periphyton exposed to UV-treated as compared with native surface MP. Mechanical properties, as assessed by compression rheology, showed that MP-exposed periphyton had longer filamentous streamers, higher stiffness, lower force recovery and a higher viscoelasticity than control periphyton. Despite the observed structural and mechanical changes of periphyton, functional parameters (i.e., photosynthetic yield, respiration and nutrient uptake efficiencies) were not altered by MP, indicating the absence of MP toxicity, and suggesting functional redundancy in the communities. Together, our results provide further proof that periphyton is a sink for MP and demonstrate that MP can impact local microbial community composition and mechanical properties of the biofilms. Consequences of these findings might be a change in dislodgement behavior of periphyton, a propagation through the food chains and impacts on nutrient cycling and energy transfer. Hence, taking the omnipresence, high persistence and material and size diversity of MP in the aquatic environment into account, their ecological consequences need further investigation

    Influence of Microplastics on Microbial Structure, Function, and Mechanical Properties of Stream Periphyton

    Get PDF
    Este artículo contiene 17 páginas, 5 figuras, 4 tablas.Periphyton is a freshwater biofilm composed of prokaryotic and eukaryotic communities that occupy rocks and sediments, forming the base of the food web and playing a key role in nutrient cycling. Given the large surface that periphyton comprises, it may also act as a sink for a diverse range of man-made pollutants, including microplastics (MP). Here we investigated the effect of 1–4 μm and 63–75 µm sized, spherical polyethylene MP with native and ultraviolet (UV)-weathered surface on developing natural stream periphyton communities over 28 days. In order to ensure proper particle exposure, we first tested MP suspension in water or in water containing either Tween 80, extracellular polymeric substances – EPS, fulvic acids, or protein. We found the extract of EPS from natural periphyton to be most suitable to create MP suspensions in preparation of exposure. Upon exposure, all tested types of MP were found to be associated with the periphyton, independent of their size and other properties. While biomass accrual and phenotypic community structure of the photoautotrophs remained unchanged, the prokaryotic and eukaryotic communities experienced a significant change in composition and relative abundances. Moreover, alpha diversity was affected in eukaryotes, but not in prokaryotes. The observed changes were more prominent in periphyton exposed to UV-treated as compared with native surface MP. Mechanical properties, as assessed by compression rheology, showed that MP-exposed periphyton had longer filamentous streamers, higher stiffness, lower force recovery and a higher viscoelasticity than control periphyton. Despite the observed structural and mechanical changes of periphyton, functional parameters (i.e., photosynthetic yield, respiration and nutrient uptake efficiencies) were not altered by MP, indicating the absence of MP toxicity, and suggesting functional redundancy in the communities. Together, our results provide further proof that periphyton is a sink for MP and demonstrate that MP can impact local microbial community composition and mechanical properties of the biofilms. Consequences of these findings might be a change in dislodgement behavior of periphyton, a propagation through the food chains and impacts on nutrient cycling and energy transfer. Hence, taking the omnipresence, high persistence and material and size diversity of MP in the aquatic environment into account, their ecological consequences need further investigation.The study was financially supported by the Velux foundation, project number 1039, Switzerland. Additional lab work was funded by Tailwind grant of Eawag Switzerland. Open access funding was provided by Eawag–Swiss Federal Institute of Aquatic Science And Technology.Peer reviewe

    Colloidal Stability and Toxicity of Gold Nanoparticles and Gold Chloride on Chlamydomonas reinhardtii

    No full text
    Here we have examined interactions of gold nanoparticles differing in primary particle size and coating with the green algae Chlamydomonas reinhardtii as function of the colloidal stability of the particles in the experimental media used for toxicity studies. Interactions of dissolved Au3+ ions with algae were also examined. Included endpoints were photosynthetic yield and algal growth. Morphological and structural effects were examined microscopically and by flow cytometry. The results indicate no significant toxicity of gold nanoparticles to C. reinhardtii. Analysis of published data suggests toxicity of gold nanoparticles on algal growth to relate rather to particular coatings than to the gold core

    Colloidal Stability and Toxicity of Gold Nanoparticles and Gold Chloride on Chlamydomonas reinhardtii

    No full text
    Here we have examined interactions of gold nanoparticles differing in primary particle size and coating with the green algae Chlamydomonas reinhardtii as function of the colloidal stability of the particles in the experimental media used for toxicity studies. Interactions of dissolved Au3+ ions with algae were also examined. Included endpoints were photosynthetic yield and algal growth. Morphological and structural effects were examined microscopically and by flow cytometry. The results indicate no significant toxicity of gold nanoparticles to C. reinhardtii. Analysis of published data suggests toxicity of gold nanoparticles on algal growth to relate rather to particular coatings than to the gold core.ISSN:1380-6165ISSN:1573-142

    Flow cytometry combined with viSNE for the analysis of microbial biofilms and detection of microplastics

    No full text
    Biofilms serve essential ecosystem functions and are used in different technical applications. Studies from stream ecology and waste-water treatment have shown that biofilm functionality depends to a great extent on community structure. Here we present a fast and easy-to-use method for individual cell-based analysis of stream biofilms, based on stain-free flow cytometry and visualization of the high-dimensional data by viSNE. The method allows the combined assessment of community structure, decay of phototrophic organisms and presence of abiotic particles. In laboratory experiments, it allows quantification of cellular decay and detection of survival of larger cells after temperature stress, while in the field it enables detection of community structure changes that correlate with known environmental drivers (flow conditions, dissolved organic carbon, calcium) and detection of microplastic contamination. The method can potentially be applied to other biofilm types, for example, for inferring community structure for environmental and industrial research and monitoring.ISSN:2041-172

    Data from: Flow cytometry combined with viSNE for analysis of microbial biofilms and detection of microplastics

    No full text
    Biofilms serve essential ecosystem functions and are used in different technical applications. Studies from stream ecology and waste-water treatment have shown that biofilm functionality depends to a great extent on community structure. Here we present a fast and easy-to-use method for individual cell-based analysis of stream biofilms, based on stain-free flow cytometry and visualization of the high-dimensional data by viSNE. The method allows the combined assessment of community structure, decay of phototrophic organisms and presence of abiotic particles. In laboratory experiments, it allows quantification of cellular decay and detection of survival of larger cells after temperature stress, while in the field it enables detection of community structure changes that correlate with known environmental drivers (flow conditions, dissolved organic carbon, calcium) and detection of microplastic contamination. The method can potentially be applied to other biofilm types, for example, for inferring community structure for environmental and industrial research and monitoring

    Field samples

    No full text
    Autofluorescence based flow-cytometry of microbial biofilm samples, taken from six different sites along the stream monhaltorferAa. For details, consult the readme file and the associated publication

    Temperature Experiment

    No full text
    Measurement of microbial biofilms single cells autofluorescence by flow cytometry, after exposure of the biofilm to an increase in temperature. For details, please consult the readme file and the associated publciation

    Fate and effects of microplastic particles in a periphyton-grazer system

    No full text
    In the aquatic environment, microplastic particles (MP) can accumulate in microbial communities that cover submerged substrata, i.e. in periphyton. Despite periphyton being the essential food source for grazers in the benthic zones, MP transfer from periphyton to benthic biota and its ecotoxicological consequences are unknown. Therefore, in this study, we investigated the effects of 1) MP on embryonal development of freshwater gastropod Physa acuta embryos, 2) MP on adult Physa acuta individuals through dietary exposure and 3) on the MP surface properties. Embryonal development tests were carried out with spherical polyethylene MP in the size of 1–4 μm (MP). Over a period of 28 days, embryonal development and hatching rate were calculated. In the feeding experiments, periphyton was grown in the presence and absence of MP and was then offered to the adult Physa acuta for 42–152 h. The snails readily ingested and subsequently egested MP, together with the periphyton as shown by MP quantification in periphyton, snail soft body tissue and feces. No selective feeding behavior upon MP exposure was detected. The ingestion of MP had no effect on mortality, feeding and defecation rate. Yet, the reproductive output of snails, measured as the number of egg clutches and numbers of eggs per clutch, decreased after the ingestion of MPs, while the hatching success of snail embryos those parents were exposed remained unaffected. In contrast, hatching rate of snail embryos was significantly reduced upon direct MP exposure. MP optical properties were changed upon the incorporation into the periphyton and the passage through the digestive tract. Our results indicate that MP incorporated in periphyton are bioavailable to aquatic grazers, facilitating the introduction of MP into the food chain and having direct adverse effects on the grazers’ reproductive fitness.ISSN:0269-7491ISSN:1878-2450ISSN:1873-642
    corecore