81 research outputs found

    Redox proteomics of the inflammatory secretome identifies a common set of redoxins and other glutathionylated proteins released in inflammation, influenza virus infection and oxidative stress

    Get PDF
    Protein cysteines can form transient disulfides with glutathione (GSH), resulting in the production of glutathionylated proteins, and this process is regarded as a mechanism by which the redox state of the cell can regulate protein function. Most studies on redox regulation of immunity have focused on intracellular proteins. In this study we have used redox proteomics to identify those proteins released in glutathionylated form by macrophages stimulated with lipopolysaccharide (LPS) after pre-loading the cells with biotinylated GSH. Of the several proteins identified in the redox secretome, we have selected a number for validation. Proteomic analysis indicated that LPS stimulated the release of peroxiredoxin (PRDX) 1, PRDX2, vimentin (VIM), profilin1 (PFN1) and thioredoxin 1 (TXN1). For PRDX1 and TXN1, we were able to confirm that the released protein is glutathionylated. PRDX1, PRDX2 and TXN1 were also released by the human pulmonary epithelial cell line, A549, infected with influenza virus. The release of the proteins identified was inhibited by the anti-inflammatory glucocorticoid, dexamethasone (DEX), which also inhibited tumor necrosis factor (TNF)-α release, and by thiol antioxidants (N-butanoyl GSH derivative, GSH-C4, and N-acetylcysteine (NAC), which did not affect TNF-α production. The proteins identified could be useful as biomarkers of oxidative stress associated with inflammation, and further studies will be required to investigate if the extracellular forms of these proteins has immunoregulatory functions

    TRAF6 and IRF7 Control HIV Replication in Macrophages

    Get PDF
    The innate immune system recognizes virus infection and evokes antiviral responses which include producing type I interferons (IFNs). The induction of IFN provides a crucial mechanism of antiviral defense by upregulating interferon-stimulated genes (ISGs) that restrict viral replication. ISGs inhibit the replication of many viruses by acting at different steps of their viral cycle. Specifically, IFN treatment prior to in vitro human immunodeficiency virus (HIV) infection stops or significantly delays HIV-1 production indicating that potent inhibitory factors are generated. We report that HIV-1 infection of primary human macrophages decreases tumor necrosis factor receptor-associated factor 6 (TRAF6) and virus-induced signaling adaptor (VISA) expression, which are both components of the IFN signaling pathway controlling viral replication. Knocking down the expression of TRAF6 in macrophages increased HIV-1 replication and augmented the expression of IRF7 but not IRF3. Suppressing VISA had no impact on viral replication. Overexpression of IRF7 resulted in enhanced viral replication while knocking down IRF7 expression in macrophages significantly reduced viral output. These findings are the first demonstration that TRAF6 can regulate HIV-1 production and furthermore that expression of IRF7 promotes HIV-1 replication

    Inhibition of interferon response by cystatin B: implication in HIV replication of macrophage reservoirs

    Get PDF
    Cystatin B and signal transducer and activator of transcription-1 (STAT-1) phosphorylation have recently been shown to increase human immunodeficiency virus-1 (HIV-1) replication in monocyte-derived macrophages (MDM), but the molecular pathways by which they do are unknown. We hypothesized that cystatin B inhibits the interferon (IFN) response and regulates STAT-1 phosphorylation by interacting with additional proteins. To test if cystatin B inhibits the IFN-β response, we performed luciferase reporter gene assays in Vero cells, which are IFN deficient. Interferon-stimulated response element (ISRE)-driven expression of firefly luciferase was significantly inhibited in Vero cells transfected with a cystatin B expression vector compared to cells transfected with an empty vector. To determine whether cystatin B interacts with other key players regulating STAT-1 phosphorylation and HIV-1 replication, cystatin B was immunoprecipitated from HIV-1-infected MDM. The protein complex was analyzed by liquid chromatography tandem mass spectrometry. Protein interactions with cystatin B were verified by Western blots and immunofluorescence with confocal imaging. Our findings confirmed that cystatin B interacts with pyruvate kinase M2 isoform, a protein previously associated cocaine enhancement of HIV-1 replication, and major vault protein (MVP), an IFN-responsive protein that interferes with JAK/STAT signals. Western blot studies confirmed the interaction with pyruvate kinase M2 isoform and MVP. Immunofluorescence studies of HIV-1-infected MDM showed that upregulated MVP colocalized with STAT-1. To our knowledge, the current study is the first to demonstrate the coexpression of cystatin B, STAT-1, MVP, and pyruvate kinase M2 isoform with HIV-1 replication in MDM and thus suggests novel targets for HIV-1 restriction in macrophages, the principal reservoirs for HIV-1 in the central nervous system

    Type I Interferons and Interferon Regulatory Factors Regulate TNF-Related Apoptosis-Inducing Ligand (TRAIL) in HIV-1-Infected Macrophages

    Get PDF
    TNF-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family that participates in HIV-1 pathogenesis through the depletion of CD4+ T cells. TRAIL is expressed on the cell membrane of peripheral immune cells and can be cleaved into a soluble, secreted form. The regulation of TRAIL in macrophages during HIV-1 infection is not completely understood. In this study, we investigated the mechanism(s) of TRAIL expression in HIV-1-infected macrophages, an important cell type in HIV-1 pathogenesis. A human monocyte-derived macrophage (MDM) culture system was infected with macrophage-tropic HIV-1ADA, HIV-1JR-FL, or HIV-1BAL strains. TRAIL, predominantly the membrane-bound form, increased following HIV-1 infection. We found that HIV-1 infection also induced interferon regulatory factor (IRF)-1, IRF-7 gene expression and signal transducers and activators of transcription 1 (STAT1) activation. Small interfering RNA knockdown of IRF-1 or IRF-7, but not IRF-3, reduced STAT1 activation and TRAIL expression. Furthermore, the upregulation of IRF-1, IRF-7, TRAIL, and the activation of STAT1 by HIV-1 infection was reduced by the treatment of type I interferon (IFN)-neutralizing antibodies. In addition, inhibition of STAT1 by fludarabine abolished IRF-1, IRF-7, and TRAIL upregulation. We conclude that IRF-1, IRF-7, type I IFNs, and STAT1 form a signaling feedback loop that is critical in regulating TRAIL expression in HIV-1-infected macrophages

    HIV-1 Tat Promotes Kaposi's Sarcoma-Associated Herpesvirus (KSHV) vIL-6-Induced Angiogenesis and Tumorigenesis by Regulating PI3K/PTEN/AKT/GSK-3β Signaling Pathway

    Get PDF
    Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) is etiologically associated with KS, the most common AIDS-related malignancy. KS is characterized by vast angiogenesis and hyperproliferative spindle cells. We have previously reported that HIV-1 Tat can trigger KSHV reactivation and accelerate Kaposin A-induced tumorigenesis. Here, we explored Tat promotion of KSHV vIL-6-induced angiogenesis and tumorigenesis. Tat promotes vIL-6-induced cell proliferation, cellular transformation, vascular tube formation and VEGF production in culture. Tat enhances vIL-6-induced angiogenesis and tumorigenesis of fibroblasts and human endothelial cells in a chicken chorioallantoic membrane (CAM) model. In an allograft model, Tat promotes vIL-6-induced tumorigenesis and expression of CD31, CD34, SMA, VEGF, b-FGF, and cyclin D1. Mechanistic studies indicated Tat activates PI3K and AKT, and inactivates PTEN and GSK-3β in vIL-6 expressing cells. LY294002, a specific inhibitor of PI3K, effectively impaired Tat's promotion of vIL-6-induced tumorigenesis. Together, these results provide the first evidence that Tat might contribute to KS pathogenesis by synergizing with vIL-6, and identify PI3K/AKT pathway as a potential therapeutic target in AIDS-related KS patients. © 2013 Zhou et al

    Herpes Simplex Virus Type 2 Triggers Reactivation of Kaposi's Sarcoma-Associated Herpesvirus from Latency and Collaborates with HIV-1 Tat

    Get PDF
    Kaposi's sarcoma-associated herpesvirus (KSHV) infection was necessary but not sufficient for Kaposi's sarcoma (KS) development without other cofactors. Previously, we identified that both human immunodeficiency type 1 (HIV-1) Tat and herpes simplex virus 1 (HSV-1) were important cofactors reactivating KSHV from latency. Here, we further investigated the potential of herpes simplex virus 2 (HSV-2) to influence KSHV replication and examined the role of Tat in this procedure. We demonstrated that HSV-2 was a potentially important factor in the pathogenesis of KS, as determined by production of lytic phase mRNA transcripts, viral proteins and infectious viral particles in BCBL-1 cells. These results were further confirmed by an RNA interference experiment using small interfering RNA targeting KSHV Rta and a luciferase reporter assay testing Rta promoter-driven luciferase activity. Mechanistic studies showed that HSV-2 infection activated nuclear factor-kappa B (NF-κB) signaling pathway. Inhibition of NF-κB pathway enhanced HSV-2-mediated KSHV activation, whereas activation of NF-κB pathway suppressed KSHV replication in HSV-2-infected BCBL-1 cells. Additionally, ectopic expression of Tat enhanced HSV-2-induced KSHV replication. These novel findings suggest a role of HSV-2 in the pathogenesis of KS and provide the first laboratory evidence that Tat may participate HSV-2-mediated KSHV activation, implying the complicated pathogenesis of acquired immunodeficiency syndrome (AIDS)-related KS (AIDS-KS) patients

    A Temporal Gate for Viral Enhancers to Co-opt Toll-Like-Receptor Transcriptional Activation Pathways upon Acute Infection

    Get PDF
    Viral engagement with macrophages activates Toll-Like-Receptors (TLRs) and viruses must contend with the ensuing inflammatory responses to successfully complete their replication cycle. To date, known counter-strategies involve the use of viral-encoded proteins that often employ mimicry mechanisms to block or redirect the host response to benefit the virus. Whether viral regulatory DNA sequences provide an opportunistic strategy by which viral enhancer elements functionally mimic innate immune enhancers is unknown. Here we find that host innate immune genes and the prototypical viral enhancer of cytomegalovirus (CMV) have comparable expression kinetics, and positively respond to common TLR agonists. In macrophages but not fibroblasts we show that activation of NFκB at immediate-early times of infection is independent of virion-associated protein, M45. We find upon virus infection or transfection of viral genomic DNA the TLR-agonist treatment results in significant enhancement of the virus transcription-replication cycle. In macrophage time-course infection experiments we demonstrate that TLR-agonist stimulation of the viral enhancer and replication cycle is strictly delimited by a temporal gate with a determined half-maximal time for enhancer-activation of 6 h; after which TLR-activation blocks the viral transcription-replication cycle. By performing a systematic siRNA screen of 149 innate immune regulatory factors we identify not only anticipated anti-viral and pro-viral contributions but also new factors involved in the CMV transcription-replication cycle. We identify a central convergent NFκB-SP1-RXR-IRF axis downstream of TLR-signalling. Activation of the RXR component potentiated direct and indirect TLR-induced activation of CMV transcription-replication cycle; whereas chromatin binding experiments using wild-type and enhancer-deletion virus revealed IRF3 and 5 as new pro-viral host transcription factor interactions with the CMV enhancer in macrophages. In a series of pharmacologic, siRNA and genetic loss-of-function experiments we determined that signalling mediated by the TLR-adaptor protein MyD88 plays a vital role for governing the inflammatory activation of the CMV enhancer in macrophages. Downstream TLR-regulated transcription factor binding motif disruption for NFκB, AP1 and CREB/ATF in the CMV enhancer demonstrated the requirement of these inflammatory signal-regulated elements in driving viral gene expression and growth in cells as well as in primary infection of neonatal mice. Thus, this study shows that the prototypical CMV enhancer, in a restricted time-gated manner, co-opts through DNA regulatory mimicry elements, innate-immune transcription factors to drive viral expression and replication in the face of on-going pro-inflammatory antiviral responses in vitro and in vivo and; suggests an unexpected role for inflammation in promoting acute infection and has important future implications for regulating latency

    Plantar Lymphatic Network

    Get PDF
    Anatomicaldescriptions of the lymphatic system of the foot are still imprecise.  In the present report we aim to elucidate theanatomical substrate of the plantar lymphatic network in order to improve thecurrent clinical practice on the foot. For the study 25 human cadaveric and 8 fetuses to term lower limbs wereemployed. All cadavers were subjected to injections procedures, formalized,immersed in a solution of hydrogen peroxide and finally dissected. On 6 of thefetal samples, the diaphanization Spatelholz technique was followed.  The superficial lymphatic network of the soleis morphologically divided into three plexuses: anterior, medium and posterior,with the medium differing from the rest. The anterior plexus presents lymphaticvessels forming scarce polygonal figures of considerable size which convergetowards the medial edge constituting ascending trunks. The middle plexus ischaracterized by the presence of transversal interconnected trunks, whichextend from one edge to the other of the sole. The posterior plexus presentedpolygonal figures of smaller size and greater number than the anterior plexusand also forms ascending trunks that are directed to the dorsal surface of thefoot.  These observations evidenced thatthe plantar lymphatic network display important differences among the caliberof the lymphatic vessels as well as in the communication and morphologicalshape of their plexus. A comparative distribution and organization between thelymphatic and the venous networks is offered.Fil: Romeo, Horacio Eduardo. Universidad de Buenos Aires. Facultad de Medicina; Argentina. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Instituto de Investigaciones Biomédicas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas; ArgentinaFil: Bernardez, R. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Instituto de Investigaciones Biomédicas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas; Argentina. Universidad de Buenos Aires. Facultad de Medicina; ArgentinaFil: Amore, M.. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Instituto de Investigaciones Biomédicas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas; Argentina. Universidad de Buenos Aires. Facultad de Medicina; ArgentinaFil: Sgarbanti, V. Universidad de Buenos Aires. Facultad de Medicina; Argentina. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Instituto de Investigaciones Biomédicas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas; Argentin
    • …
    corecore