11 research outputs found

    Spectroscopic ellipsometry study of barrier width effect in self-organized InGaAs/GaAs QDs laser diodes

    Get PDF
    Molecular beam epitaxy (MBE) is used to grow InGaAs/GaAs quantum dots (QDs) laser diodes (LDs) with different barrier widths (5, 10 and 15 nm) at 580 ÂşC on GaAs substrates. Optical properties of the InGaAs/GaAs QDs LDs have been investigated by using the spectroscopic ellipsometry (SE) technique. A general oscillator optical model has been utilized to fit the experimental data in order to obtain the LD layer thicknesses, refractive index and absorption coefficient. The dielectric function, the energy band gap and the surface and volume energy loss functions are computed in the energy range 1-6 eV. The optical properties of the deposited InGaAs/GaAs QDs LDs are found to be affected by the barrier width, which give more insight into carriers dynamics and optical parameters in these devices. The refractive indices, the extinction coefficients and the dielectric constants of the LDs with barrier widths 15 and 10 nm are relatively larger than those of the LD with barrier width 5 nm. These indicate that optical properties of LDs with larger barrier widths (15 and 10 nm) will be improved. The interband transition energies in the three devices have calculated and identified. Two energy gaps at 1.04 and ~1.37 eV are obtained for all the heterostructures which indicates that fabricated LDs may be operating for a wavelength of 1.23 m at room temperature

    Ex-Situ Thermal Treatment Effects on the Temperature Dependent Carriers Dynamics in InAs/InGaAs/GaAs Quantum Dots

    No full text
    The effects of post-growth thermal annealing of InAs QD with the high in-content strain reducing layer (SRL) on the temperature dependent PL properties have been investigated. The as-grown QD have shown an atypical behavior manifested by a sigmoidal emission energy and V-shaped linewidth evolution with temperature. These behaviors have been progressively glossed by subjecting the structure to post growth annealing at 650 °C and 750 °C for 50 s. The results are discussed in the frame of the localized states ensemble model, which reveals that carriers transfer take place by thermal activation to the continuum states of the strain-reducing layer and subsequent redistribution

    High-field spin-polarization transition in the Landau bands of quasi-2D electron gases with strong lateral modulation

    No full text
    2D electron gases, imbedded in a 1D lateral potential (in AlxGa1-xAs), made by a periodic modulation in alloy composition, are obtained by organized epitaxy on vicinal surfaces. The exchange enhancement of the Landau level spin splitting is inhibited up to a strong magnetic field (similar to 6T here). Low-temperature magneto-transport data revealing this effect cannot be explained by disorder but are fully consistent with the large potential gradients associated with the modulation amplitude

    Investigation of the InAs/GaAs Quantum Dots’ Size: Dependence on the Strain Reducing Layer’s Position

    No full text
    This work reports on theoretical and experimental investigation of the impact of InAs quantum dots (QDs) position with respect to InGaAs strain reducing layer (SRL). The investigated samples are grown by molecular beam epitaxy and characterized by photoluminescence spectroscopy (PL). The QDs optical transition energies have been calculated by solving the three dimensional Schrödinger equation using the finite element methods and taking into account the strain induced by the lattice mismatch. We have considered a lens shaped InAs QDs in a pure GaAs matrix and either with InGaAs strain reducing cap layer or underlying layer. The correlation between numerical calculation and PL measurements allowed us to track the mean buried QDs size evolution with respect to the surrounding matrix composition. The simulations reveal that the buried QDs’ realistic size is less than that experimentally driven from atomic force microscopy observation. Furthermore, the average size is found to be slightly increased for InGaAs capped QDs and dramatically decreased for QDs with InGaAs under layer

    Towards InAs/InGaAs/GaAs Quantum Dot Solar Cells Directly Grown on Si Substrate

    No full text
    This paper reports on an initial assessment of the direct growth of In(Ga)As/GaAs quantum dots (QDs) solar cells on nanostructured surface Si substrate by molecular beam epitaxy (MBE). The effect of inserting 40 InAs/InGaAs/GaAs QDs layers in the intrinsic region of the heterojunction pin-GaAs/n+-Si was evaluated using photocurrent spectroscopy in comparison with pin-GaAs/n+-Si and pin-GaAs/GaAs without QDs. The results reveal the clear contribution of the QDs layers to the improvement of the spectral response up to 1200 nm. The novel structure has been studied by X ray diffraction (XRD), photoluminescence spectroscopy (PL) and transmission electron microscopy (TEM). These results provide considerable insights into low cost III-V material-based solar cells

    The effect of nitridation on the optical properties of InAs quantum dots grown on GaAs substrate by MBE

    No full text
    International audienceThe effect of nitridation on the optical properties of InAs quantum dots grown on GaAs substrate by MBE, Vacuum

    Detecting Spatially Localized Exciton in Self-Organized InAs/InGaAs Quantum Dot Superlattices: a Way to Improve the Photovoltaic Efficiency

    No full text
    Abstract This paper reports on experimental and theoretical investigations of atypical temperature-dependent photoluminescence properties of multi-stacked InAs quantum dots in close proximity to InGaAs strain-relief underlying quantum well. The InAs/InGaAs/GaAs QD heterostructure was grown by solid-source molecular beam epitaxy (SS-MBE) and investigated via photoluminescence (PL), spectroscopic ellipsometry (SE), and picosecond time-resolved photoluminescence. Distinctive double-emission peaks are observed in the PL spectra of the sample. From the excitation power-dependent and temperature-dependent PL measurements, these emission peaks are associated with the ground-state transition from InAs QDs with two different size populations. Luminescence measurements were carried out as function of temperature in the range of 10–300 K by the PL technique. The low temperature PL has shown an abnormal emission which appeared at the low energy side and is attributed to the recombination through the deep levels. The PL peak energy presents an anomalous behavior as a result of the competition process between localized and delocalized carriers. We propose the localized-state ensemble model to explain the usual photoluminescence behaviors. The quantitative study shows that the quantum well continuum states act as a transit channel for the redistribution of thermally activated carriers. We have determined the localization depth and its effect on the application of the investigated heterostructure for photovoltaic cells. The model gives an overview to a possible amelioration of the InAs/InGaAs/GaAs QDs SCs properties based on the theoretical calculations
    corecore