881 research outputs found

    Non-global logarithms in inter-jet energy flow with kt clustering requirement

    Get PDF
    Recent work in inter-jet energy flow has identified a class of leading logarithms previously not considered in the literature. These so-called non-global logarithms have been shown to have significant numerical impact on gaps-between-jets calculations at the energies of current particle colliders. Here we calculate, at fixed order and to all orders, the effect of applying clustering to the gluonic final state responsible for these logarithms for a trivial colour flow 2 jet system. Such a clustering algorithm has already been used for experimental measurements at HERA. We find that the impact of the non-global logarithms is reduced, but not removed, when clustering is demanded, a result which is of considerable interest for energy flow observable calculations.Comment: 13 pages, 4 figure

    Selling Zoning: Do Density Bonus Incentives for Moderate-Cost Housing Work

    Get PDF
    This Article reviews the housing affordability problem, the California legislation, and previous research findings. The Article outlines our methods, presents our results, and recommends program improvements

    Bay watch: using unmanned aerial vehicles (UAV’s) to survey the box jellyfish Chironex fleckeri

    Get PDF
    Biological investigations on free ranging marine species are regarded as challenging throughout the scientific community. This is particularly true for ‘logistically difficult species’ where their cryptic natures, low abundance, patchy distributions and difficult and/or dangerous sampling environments, make traditional surveys near impossible. What results is a lack of ecological knowledge on such marine species. However, advances in UAV technology holds potential for overcoming these logistical difficulties and filling this knowledge gap. Our research focused on one such logistically difficult species, the Australian box Jellyfish (Chironex fleckeri), and we investigated the capacity of consumer grade UAV technology to detect this, highly venomous, target species in the inshore waters of Northern Queensland Australia. At two sites in the Weipa area, we utilized video analysis, visual count comparisons with a netted animal tally, and evaluated the role of associated environmental conditions, such as wind speed, water visibility and cloud cover on jellyfish detection rates. In total fifteen, 70 meter transects were completed between two sites, with 107 individuals captured. Drone success varied between the two sites with a significant difference between field and post-field (laboratory) counts. Animal size and cloud cover also had significant effects on detection rates with an increase in cloud cover and animal size enhancing detection probability. This study provides evidence to suggest drone surveys overcome obstacles that traditional surveys can’t, with respect to species deemed logistically difficult and open scope for further ecological investigations on such species

    Dysregulated oscillatory connectivity in the visual system in autism spectrum disorder

    Get PDF
    Autism spectrum disorder is increasingly associated with atypical perceptual and sensory symptoms. Here we explore the hypothesis that aberrant sensory processing in autism spectrum disorder could be linked to atypical intra- (local) and interregional (global) brain connectivity. To elucidate oscillatory dynamics and connectivity in the visual domain we used magnetoencephalography and a simple visual grating paradigm with a group of 18 adolescent autistic participants and 18 typically developing control subjects. Both groups showed similar increases in gamma (40-80 Hz) and decreases in alpha (8-13 Hz) frequency power in occipital cortex. However, systematic group differences emerged when analysing intra- and interregional connectivity in detail. First, directed connectivity was estimated using non-parametric Granger causality between visual areas V1 and V4. Feedforward V1-to-V4 connectivity, mediated by gamma oscillations, was equivalent between autism spectrum disorder and control groups, but importantly, feedback V4-to-V1 connectivity, mediated by alpha (8-13 Hz) oscillations, was significantly reduced in the autism spectrum disorder group. This reduction was positively correlated with autistic quotient scores, consistent with an atypical visual hierarchy in autism, characterized by reduced top-down modulation of visual input via alpha-band oscillations. Second, at the local level in V1, coupling of alpha-phase to gamma amplitude (alpha-gamma phase amplitude coupling) was reduced in the autism spectrum disorder group. This implies dysregulated local visual processing, with gamma oscillations decoupled from patterns of wider alpha-band phase synchrony (i.e. reduced phase amplitude coupling), possibly due to an excitation-inhibition imbalance. More generally, these results are in agreement with predictive coding accounts of neurotypical perception and indicate that visual processes in autism are less modulated by contextual feedback information

    Investigating predictive coding in younger and older children using MEG and a multi-feature auditory oddball paradigm

    Get PDF
    There is mounting evidence for predictive coding theory from computational, neuroimaging, and psychological research. However, there remains a lack of research exploring how predictive brain function develops across childhood. To address this gap, we used pediatric magnetoencephalography to record the evoked magnetic fields of 18 younger children (M = 4.1 years) and 19 older children (M = 6.2 years) as they listened to a 12-min auditory oddball paradigm. For each child, we computed a mismatch field "MMF": an electrophysiological component that is widely interpreted as a neural signature of predictive coding. At the sensor level, the older children showed significantly larger MMF amplitudes relative to the younger children. At the source level, the older children showed a significantly larger MMF amplitude in the right inferior frontal gyrus relative to the younger children, P < 0.05. No differences were found in 2 other key regions (right primary auditory cortex and right superior temporal gyrus) thought to be involved in mismatch generation. These findings support the idea that predictive brain function develops during childhood, with increasing involvement of the frontal cortex in response to prediction errors. These findings contribute to a deeper understanding of the brain function underpinning child cognitive development

    Pressure tuning of strain in CdTe/InSb epilayer: A photoluminescence and photomodulated reflectivity study

    Get PDF
    doi:10.1063/1.354415The heavy‐hole and light‐hole excitons of a CdTe epilayer, pseudomorphically grown on an InSb epilayer by molecular beam epitaxy, are studied with a diamond anvil cell as a function of applied hydrostatic pressure via photoluminescence (PL) and photomodulated reflectivity (PR) spectroscopies. They are compared with the excitonic features in the simultaneously measured PL spectra of a sample of bulk CdTe. Under applied pressure, the lattice mismatch‐induced splitting between the light‐hole and heavy‐hole related transitions increases in a continuous and reversible manner because of the additional pressure‐induced compression due to the difference in the compressibilities of CdTe and InSb. The unusually large strain sustained by the CdTe epilayer under pressure is discussed in the light of various models. The PR signal vanishes after the InSb epilayer goes through a structural phase transition at approximately 20 kbar, while the PL signal persists until it is irreversibly quenched by the CdTe epilayer undergoing a structural phase transition at approximately 30 kbar. For pressures between 20 and 30 kbar, the behavior of the CdTe epilayer is similar to that of the bulk sample; the strain appears to have been relaxed due to the structural phase transition which has taken place in InSb. Values of the first‐ and second‐order pressure coefficients for bulk CdTe and for the CdTe epilayer as well as values of the hydrostatic and shear deformation potentials are obtained at 14 and 80 K and compared with previously quoted values.The work by H.R.C. was supported in part by the U.S. Department of Energy under Contract No. DE-FG02-89ER45402. M.C. acknowledges partial support from the Research Corporation and the U.S. Army Grant No. DAAL-03-92-G-038 1. M.S.B. acknowledges partial support by the G. Ellsworth Huggins Fellowship. A.K.R. and R.L.G. acknowledge support from the National Science Foundation (Materials Research Group No. DMR89-13706)

    The Host Galaxy and Redshift of the Repeating Fast Radio Burst FRB 121102

    Get PDF
    The precise localization of the repeating fast radio burst (FRB 121102) has provided the first unambiguous association (chance coincidence probability p3×104p\lesssim3\times10^{-4}) of an FRB with an optical and persistent radio counterpart. We report on optical imaging and spectroscopy of the counterpart and find that it is an extended (0.60.80.6^{\prime\prime}-0.8^{\prime\prime}) object displaying prominent Balmer and [OIII] emission lines. Based on the spectrum and emission line ratios, we classify the counterpart as a low-metallicity, star-forming, mr=25.1m_{r^\prime} = 25.1 AB mag dwarf galaxy at a redshift of z=0.19273(8)z=0.19273(8), corresponding to a luminosity distance of 972 Mpc. From the angular size, the redshift, and luminosity, we estimate the host galaxy to have a diameter 4\lesssim4 kpc and a stellar mass of M47×107MM_*\sim4-7\times 10^{7}\,M_\odot, assuming a mass-to-light ratio between 2 to 3ML1\,M_\odot\,L_\odot^{-1}. Based on the Hα\alpha flux, we estimate the star formation rate of the host to be 0.4Myr10.4\,M_\odot\,\mathrm{yr^{-1}} and a substantial host dispersion measure depth 324pccm3\lesssim 324\,\mathrm{pc\,cm^{-3}}. The net dispersion measure contribution of the host galaxy to FRB 121102 is likely to be lower than this value depending on geometrical factors. We show that the persistent radio source at FRB 121102's location reported by Marcote et al (2017) is offset from the galaxy's center of light by \sim200 mas and the host galaxy does not show optical signatures for AGN activity. If FRB 121102 is typical of the wider FRB population and if future interferometric localizations preferentially find them in dwarf galaxies with low metallicities and prominent emission lines, they would share such a preference with long gamma ray bursts and superluminous supernovae.Comment: 12 pages, 3 figures, Published in ApJ Letters. V2: Corrected mistake in author lis

    Career patterns of U.S. male academic social scientists

    Full text link
    Seventy-four U.S. male academic social scientists provided career stage data. All were born between 1893 and 1903. The subjects were divided into four groups on the basis of their scholarly article productivity after age 59. Spilerman's conceptualization of work history guided the analysis. To a lesser extent, adult development theory (e.g., Hall and Nougaim, 1968) was also examined.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42843/1/10734_2004_Article_BF00139794.pd
    corecore