847 research outputs found

    Instance Embedding Transfer to Unsupervised Video Object Segmentation

    Full text link
    We propose a method for unsupervised video object segmentation by transferring the knowledge encapsulated in image-based instance embedding networks. The instance embedding network produces an embedding vector for each pixel that enables identifying all pixels belonging to the same object. Though trained on static images, the instance embeddings are stable over consecutive video frames, which allows us to link objects together over time. Thus, we adapt the instance networks trained on static images to video object segmentation and incorporate the embeddings with objectness and optical flow features, without model retraining or online fine-tuning. The proposed method outperforms state-of-the-art unsupervised segmentation methods in the DAVIS dataset and the FBMS dataset.Comment: To appear in CVPR 201

    Establishing RNAi in a non-model organism: The Antarctic nematode Panagrolaimus sp. DAW1

    Get PDF
    The Antarctic nematode Panagrolaimus sp. DAW1 is one of the only organisms known to survive extensive intracellular freezing throughout its tissues. Although the physiological mechanisms of this extreme adaptation are partly understood, the molecular mechanisms remain largely unknown. RNAi is a method that allows the examination of gene function in a direct, targeted manner, by knocking out specific mRNAs and revealing the effects on the phenotype. In this study we have explored the viability of RNAi in Panagrolaimus sp. DAW1. In the first trial, nematodes were fed E. coli expressing Panagrolaimus sp. DAW1 dsRNA of the embryonic lethal genes rps-2 and dhc, and the blister gene duox. Pd-rps-2(RNAi)-treated nematodes showed a significant decrease in larval hatching. However, qPCR showed no significant decrease in the amount of rps-2 mRNA in Pd-rps-2(RNAi)-treated animals. Several soaking protocols for dsRNA uptake were investigated using the fluorescent dye FITC. Desiccation-enhanced soaking showed the strongest uptake of FITC and resulted in a significant and consistent decrease of mRNA levels of two of the four tested genes (rps-2 and tps-2a), suggesting effective uptake of dsRNA-containing solution by the nematode. These findings suggest that RNAi by desiccation-enhanced soaking is viable in Panagrolaimus sp. DAW1 and provide the first functional genomic approach to investigate freezing tolerance in this non-model organism. RNAi, in conjunction with qPCR, can be used to screen for candidate genes involved in intracellular freezing tolerance in Panagrolaimus sp. DAW1

    Human Land-Use and Soil Change

    Get PDF
    Soil change is the central, if under-recognized, component of land and ecosystem changes (Yaalon 2007). Soils change naturally over a long timescale (decades to millennia) in response to soil-forming factors (biota, climate, parent material, time, and topography). However, human land-use pressures are currently the driving force in maintaining, aggrading, and degrading soil properties across nearly all ecosystems. Traditionally, in order to simplify and standardize the relationships between soils and soil-forming factors, pedology and soil survey have often focused on ā€œnaturalā€ or ā€œvirginā€ soil (e.g., Hilgard 1860; Jenny 1980), but many argue that humans should be thought of as a part of soil genesis and formation (Amundson and Jenny 1991; Yaalon and Yaron 1966; Bidwell and Hole 1965). Landscapes and soils have been altered by wide-scale conversion to agriculture, use of vegetative products, and development for direct human use. Land-use impacts can be gradual or abrupt, subtle, or catastrophic (Table 18.1). The interactions between environmental changes and geomorphic and biotic feedback loops vary across temporal and spatial scales depending on the setting (Monger and Bestelmeyer 2006). The effects of land use can linger for decades to centuries and beyond (Hall et al. 2013; Jangid et al. 2011; Sandor et al. 1986). While each land resource region has some specific soilā€“land use interactions, this chapter will focus on general uses and topical areas: croplands, wetlands, grazing lands (both pasture and rangelands), and forest lands with smaller sections devoted to special issues including acid sulfate soils, strip-mined lands, and cold soils

    LOSS OF PHOSPHORUS BY RUNOFF FOR AGRICULTURAL WATERSHEDS

    Get PDF
    The loss of nutrients in runoff from agricultural land is a major cause of poor surface water quality in the United State. Scientists (NRCS) developed a technique to estimate the impact of agricultural watersheds on natural water resources. The objectives of this study were to apply this technique on the Wagon Train (WT),watershed to predict (1) loss of water by surface runoff, (2) loss of phosphorus (P) from soils by runoff and P loading for WT reservoir. The annual loss of water by runoff was estimated at 4.32 million m3 . The USGS data for a 50-year period (1951 to 2000) indicated that the average annual inflow for WT reservoir was 4.25 million m3 . The predicted annual P loss by runoff was 844 kg and could be considered as the annual loading for WT reservoir. The predicted P concentration in the runoff water at field sites was 196 Ī¼g/L. Phosphorus concentration observed in major streams at the beginning of spring (March) ranged from 99 Ī¼g/L to 240 Ī¼g/L with an average of 162 Ī¼g/L (S.D..= 40 Ī¼g/L), and the average P concentration in water samples taken from different locations in the reservoir was 140 Ī¼g/L. Phosphorus uptake by algae, weeds and aquatic plants, as well as high pH in the reservoir and streams might explain the slight drop of P concentration in waters. Further, the average P concentration observed in the main stream samples for the entire rainy season (March through October), ranged between 157 and 346 Ī¼g/L with an average of 267 Ī¼g/L (S.D. = 65 Ī¼g/L). Application of P fertilizers (April/May) for summer crops might explain the increase in P concentration. When factors affecting P concentration in streams are considered, the technique could provide a reasonable estimation of P concentration in stream water

    Infrared spectroscopy of diatomic molecules - a fractional calculus approach

    Full text link
    The eigenvalue spectrum of the fractional quantum harmonic oscillator is calculated numerically solving the fractional Schr\"odinger equation based on the Riemann and Caputo definition of a fractional derivative. The fractional approach allows a smooth transition between vibrational and rotational type spectra, which is shown to be an appropriate tool to analyze IR spectra of diatomic molecules.Comment: revised + extended version, 9 pages, 6 figure

    Land Use and Season Influence Event-Scale Nitrate and Soluble Reactive Phosphorus Exports and Export Stoichiometry from Headwater Catchments

    Get PDF
    Catchment nutrient export, especially during high flow events, can influence ecological processes in receiving waters by altering nitrogen (N) and phosphorus (P) concentrations and relative amounts (stoichiometry). Event-scale N and P export dynamics may be significantly altered by land use/land cover (LULC) and season. Consequently, to manage water resources, it is important to understand how LULC and season interact to influence event N and P export. In situ, high-frequency spectrophotometers allowed us to continuously and concurrently monitor nitrate (NO3āˆ’) and soluble reactive P (SRP) concentrations and therefore examine event-scale NO3āˆ’ and SRP export dynamics. Here we analyzed event NO3āˆ’ and SRP concentration-discharge hysteresis patterns and yields for \u3e400 events to evaluate how LULC and seasonality influence event NO3āˆ’ and SRP export dynamics in three low-order watersheds with different primary LULCs (agricultural, forested, and urban). Differences among event NO3āˆ’ and SRP hysteresis patterns suggest these nutrients have different source areas and dominant transport pathways that were impacted by both LULC and seasonality. Unexpectedly, we observed similar seasonal patterns in event NO3āˆ’:SRP stoichiometry among LULCs, with the most N-enriched events occurring in spring, and event stoichiometry approaching Redfield N:P ratios in the fall. However, seasonal stoichiometry patterns were driven by unique seasonal NO3āˆ’ and SRP export patterns at each site. Overall these findings suggest LULC and seasonality interact to alter the timing and magnitude of event NO3āˆ’ and SRP exports, leading to seasonal patterns in event NO3āˆ’ to SRP stoichiometry that may influence ecological processes, such as productivity, in receiving waters

    Investigating trehalose synthesis genes after cold acclimation in the Antarctic nematode Panagrolaimus sp. DAW1

    Get PDF
    Panagrolaimus sp. DAW1 is a freeze-tolerant Antarctic nematode which survives extensive intracellular ice formation. The molecular mechanisms of this extreme adaptation are still poorly understood. We recently showed that desiccation-enhanced RNAi-soaking can be used - in conjunction with qPCR - to screen for phenotypes associated with reduced expression of candidate genes in Panagrolaimus sp. DAW1. Here we present the use of this approach to investigate the role of trehalose synthesis genes in this remarkable organism. Previous studies have showed that acclimating Panagrolaimus sp. DAW1 at 5 Ā°C before freezing or desiccation substantially enhances survival. In this study the expression of tps-2 and other genes associated with trehalose metabolism, as well as lea-1, hsp-70 and gpx-1 in cold-acclimated and non-acclimated nematodes was analyzed using qPCR. Pd-tps-2 and Pd-lea-1 were significantly up-regulated after cold-acclimation, indicating an inducible expression in the cold-adaptation of Panagrolaimus sp. DAW1. The role of trehalose synthesis genes in Panagrolaimus sp. DAW1 was further investigated by RNAi. Compared to the controls, Pd-tps-2a(RNAi)-treated and cold-acclimated nematodes showed a significant decrease in mRNA, but no change in trehalose content or freezing survival. The involvement of two other trehalose synthesis genes (tps-2b and gob-1) was also investigated. These findings provide the first functional genomic investigation of trehalose synthesis genes in the non-model organism Panagrolaimus sp. DAW1. The presence of several trehalose synthesis genes with different RNAi sensitivities suggests the existence of multiple backup systems in Panagrolaimus sp. DAW1, underlining the importance of this sugar in preparation for freezing

    Anterior nasal versus nasal mid-turbinate sampling for a SARS-CoV-2 antigen-detecting rapid test: does localisation or professional collection matter?

    Get PDF
    INTRODUCTION: Most SARS-CoV-2 antigen-detecting rapid diagnostic tests require nasopharyngeal sampling, which is frequently perceived as uncomfortable and requires healthcare professionals, thus limiting scale-up. Nasal sampling could enable self-sampling and increase acceptability. The term nasal sampling is often not used uniformly and sampling protocols differ. METHODS: This manufacturer-independent, prospective diagnostic accuracy study, compared professional anterior nasal and nasal mid-turbinate sampling for a WHO-listed SARS-CoV-2 antigen-detecting rapid diagnostic test. The second group of participants collected a nasal mid-turbinate sample themselves and underwent a professional nasopharyngeal swab for comparison. The reference standard was real-time polymerase chain reaction (RT-PCR) using combined oro-/nasopharyngeal sampling. Individuals with high suspicion of SARS-CoV-2 infection were tested. Sensitivity, specificity, and percent agreement were calculated. Self-sampling was observed without intervention. Feasibility was evaluated by observer and participant questionnaires. RESULTS: Among 132 symptomatic adults, both professional anterior nasal and nasal mid-turbinate sampling yielded a sensitivity of 86.1% (31/36 RT-PCR positives detected; 95%CI: 71.3-93.9) and a specificity of 100.0% (95%CI: 95.7-100). The positive percent agreement was 100% (95%CI: 89.0-100). Among 96 additional adults, self nasal mid-turbinate and professional nasopharyngeal sampling yielded an identical sensitivity of 91.2% (31/34; 95%CI 77.0-97.0). Specificity was 98.4% (95%CI: 91.4-99.9) with nasal mid-turbinate and 100.0% (95%CI: 94.2-100) with nasopharyngeal sampling. The positive percent agreement was 96.8% (95%CI: 83.8-99.8). Most participants (85.3%) considered self-sampling as easy to perform. CONCLUSION: Professional anterior nasal and nasal mid-turbinate sampling are of equivalent accuracy for an antigen-detecting rapid diagnostic test in ambulatory symptomatic adults. Participants were able to reliably perform nasal mid-turbinate sampling themselves, following written and illustrated instructions. Nasal self-sampling will facilitate scaling of SARS-CoV-2 antigen testing

    Universal Rights and Wrongs

    Get PDF
    This paper argues for the important role of customers as a source of competitive advantage and firm growth, an issue which has been largely neglected in the resource-based view of the firm. It conceptualizes Penroseā€™s (1959) notion of an ā€˜inside trackā€™ and illustrates how in-depth knowledge about established customers combines with joint problem-solving activities and the rapid assimilation of new and previously unexploited skills and resources. It is suggested that the inside track represents a distinct and perhaps underestimated way of generating rents and securing long-term growth. This also implies that the sources of sustainable competitive advantage in important respects can be sought in idiosyncratic interfirm relationships rather than within the firm itself
    • ā€¦
    corecore