9 research outputs found

    A nonlinear method of removing harmonic noise in geophysical data

    Get PDF
    A nonlinear, adaptive method to remove the harmonic noise that commonly resides in geophysical data is proposed in this study. This filtering method is based on the ensemble empirical mode decomposition algorithm in conjunction with the logarithmic transform. We present a synthetic model study to investigate the capability of signal reconstruction from the decomposed data, and compare the results with those derived from other 2-D adaptive filters. Applications to the real seismic data acquired by using an ocean bottom seismograph and to a shot gather of the ground penetrating radar demonstrate the robustness of this method. Our work proposes a concept that instead of Fourier-based approaches, the harmonic noise removal in geophysical data can be achieved effectively by using an alternative nonlinear adaptive data analysis method, which has been applied extensively in other scientific studies

    Glyco-Phospho-Glycero Ether Lipids (GPGEL): synthesis and evaluation as small conductance Ca2+-activated K+ channel (SK3) inhibitors

    No full text
    International audienceThe SK3 channel, a member of the small conductance calcium-dependent potassium channels (SKCa), plays a central role with respect to the motility of highly metastatic cancerous cells (e.g. MDA-MB435s – breast cancer cell). Edelfosine, an ether lipid derivative, is able to partially inhibit this channel activity and thus reduce the SK3-dependent cell motility, but, due to its toxicity, analogues of this compound were highly desired. Ohmline, an edelfosine analogue that possesses a lactose unit in its polar domain, was the first efficient and non-toxic SK3 inhibitor that exhibits an amphiphilic structure. In the present work, we have modified the polar head of Ohmline by placing a disubstituted phosphate group between a disaccharide unit (lactose, maltose, and melibiose) and the glycerol ether-lipid moiety. It was first observed that this modification increases the water solubility of these compounds. All these novel compounds are efficient SK3 channel inhibitors with an activity comparable to Ohmline (patch-clamp measurements). These compounds are also able to reduce the SK3-dependent cell motility with similar efficacies to Ohmline. In a broader perspective it is shown that the presence of one anionic charge (coming from the presence of a phosphate group) in the polar head group does not alter the SK3 channel inhibition and provides insights into the future development of a class of migration-targeted anticancer agents

    Synthesis of a Novel UDP-carbasugar as UDP-galactopyranose Mutase Inhibitor

    No full text
    The multistep synthesis of a novel UDP-<i>C</i>-cyclohexene, designed as a high energy intermediate analogue of the UDP-galactopyranose mutase (UGM) catalyzed isomerization reaction, is reported. The synthesis of the central carbasugar involved the preparation of a galactitol derivative bearing two olefins necessary for the construction of the cyclohexene ring by a ring-closing metathesis as a key step. Further successive phosphonylation, deprotection, and UMP coupling provided the target molecule. The final molecule was assayed against UGM and compared with UDP-<i>C</i>-Gal<i>f</i>, the C-glycosidic UGM substrate analogue

    Lipothiophosphoramidates for gene delivery: critical role of the cationic polar headgroup

    No full text
    International audienceWhen considering a family of cationic lipids designed for gene delivery, the nature of the cationic polar head probably has a great influence on both the transfection efficacy and toxicity. Starting from a cationic lipothiophosphoramidate bearing a trimethylammonium headgroup, we report herein the impact on gene transfection activity of the replacement of the trimethylammonium moiety by a trimethylphosphonium or a trimethylarsonium group. A series of three different human epithelial cell lines were used for the experimental transfection studies (HeLa, A549 and 16HBE14o(−)). The results basically showed that such structural modifications of the cationic headgroup can lead to a high transfection efficacy at low lipid/DNA charge ratios together with a low cytotoxicity. It thus appears that the use of a trimethylarsonium cationic headgroup for the design of efficient gene carriers, which was initially proposed in the lipophosphoramidate series, can be extended to other series of cationic lipids and might therefore have great potential for the development of novel non-viral vectors in general

    Layered Simple Hydroxides Functionalized by Fluorene-Phosphonic Acids: Synthesis, Interface Theoretical Insights, and Magnetoelectric Effect

    No full text
    International audienceCopper- and cobalt-based layered simple hydroxides (LSH) are successfully functionalized by a series of fluorene mono- and diphosphonic acids, using anionic exchange reactions and a preintercalation strategy. The lateral functionalization of the fluorene moieties has only little impact on the overall structure of the obtained layered hybrid materials but it influences the organization of the molecules within the interlamellar spacing. For bulky fluorene (9,9-dioctyl derivative), luminescence is preserved when inserted into copper and cobalt hydroxydes, whereas it is completely quenched for the other fluorenes. Detailed characterization of the internal structure and chemical bonding properties for copper- and cobalt-based hybrids is performed via ancillary experimental techniques. For the copper-based LSH class, for which more elusive findings are found, first-principles molecular dynamics simulations unravel the fundamental stabilizing role of the H-bonding network promoted within the local environments of the fluorene mono- and diphosphonic acids. The cobalt series of compounds constitute a new class of hybrid magnets, with ordering temperatures ranging from 11.8 to 17.8 K and show a clear magnetoelectric effect. This effect appears above a threshold magnetic field, which is null below the magnetic ordering temperature, and it persists in the paramagnetic regime till about 110 K

    Layered Simple Hydroxides Functionalized by Fluorene-Phosphonic Acids: Synthesis, Interface Theoretical Insights, and Magnetoelectric Effect

    No full text
    International audienceCopper- and cobalt-based layered simple hydroxides (LSH) are successfully functionalized by a series of fluorene mono- and diphosphonic acids, using anionic exchange reactions and a preintercalation strategy. The lateral functionalization of the fluorene moieties has only little impact on the overall structure of the obtained layered hybrid materials but it influences the organization of the molecules within the interlamellar spacing. For bulky fluorene (9,9-dioctyl derivative), luminescence is preserved when inserted into copper and cobalt hydroxydes, whereas it is completely quenched for the other fluorenes. Detailed characterization of the internal structure and chemical bonding properties for copper- and cobalt-based hybrids is performed via ancillary experimental techniques. For the copper-based LSH class, for which more elusive findings are found, first-principles molecular dynamics simulations unravel the fundamental stabilizing role of the H-bonding network promoted within the local environments of the fluorene mono- and diphosphonic acids. The cobalt series of compounds constitute a new class of hybrid magnets, with ordering temperatures ranging from 11.8 to 17.8 K and show a clear magnetoelectric effect. This effect appears above a threshold magnetic field, which is null below the magnetic ordering temperature, and it persists in the paramagnetic regime till about 110 K
    corecore