420 research outputs found
Single-cell Imaging And Spectroscopic Analyses Of Cr(vi) Reduction On The Surface Of Bacterial Cells
We investigate the single-cell reduction of toxic Cr(VI) by the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 (MR-1), an important bioremediation process, using Raman spectroscopy and scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDX). Our experiments indicate that the toxic, highly soluble Cr(VI) can be efficiently reduced to less toxic, nonsoluble Cr2O3 nanoparticles by MR-1. Cr2O3 is observed to emerge as nanoparticles adsorbed on the cell surface and its chemical nature is identified by EDX imaging and Raman spectroscopy. Co-localization of Cr2O3 and cytochromes by EDX imaging and Raman spectroscopy suggests a terminal reductase role for MR-1 surface-exposed cytochromes MtrC and OmcA. Our experiments revealed that the cooperation of surface proteins OmcA and MtrC makes the reduction reaction most efficient, and the sequence of the reducing reactivity of MR-1 is wild type \u3e single mutant Delta mtrC or mutant Delta omcA \u3e double mutant (Delta omcA-Delta mtrC). Moreover, our results also suggest that direct microbial Cr(VI) reduction and Fe(II) (hematite)-mediated Cr(VI) reduction mechanisms may coexist in the reduction processes
The Histone H3K36 Methyltransferase MES-4 Acts Epigenetically to Transmit the Memory of Germline Gene Expression to Progeny
Methylation of histone H3K36 in higher eukaryotes is mediated by multiple methyltransferases. Set2-related H3K36 methyltransferases are targeted to genes by association with RNA Polymerase II and are involved in preventing aberrant transcription initiation within the body of genes. The targeting and roles of the NSD family of mammalian H3K36 methyltransferases, known to be involved in human developmental disorders and oncogenesis, are not known. We used genome-wide chromatin immunoprecipitation (ChIP) to investigate the targeting and roles of the Caenorhabditis elegans NSD homolog MES-4, which is maternally provided to progeny and is required for the survival of nascent germ cells. ChIP analysis in early C. elegans embryos revealed that, consistent with immunostaining results, MES-4 binding sites are concentrated on the autosomes and the leftmost âŒ2% (300 kb) of the X chromosome. MES-4 overlies the coding regions of approximately 5,000 genes, with a modest elevation in the 5âČ regions of gene bodies. Although MES-4 is generally found over Pol II-bound genes, analysis of gene sets with different temporal-spatial patterns of expression revealed that Pol II association with genes is neither necessary nor sufficient to recruit MES-4. In early embryos, MES-4 associates with genes that were previously expressed in the maternal germ line, an interaction that does not require continued association of Pol II with those loci. Conversely, Pol II association with genes newly expressed in embryos does not lead to recruitment of MES-4 to those genes. These and other findings suggest that MES-4, and perhaps the related mammalian NSD proteins, provide an epigenetic function for H3K36 methylation that is novel and likely to be unrelated to ongoing transcription. We propose that MES-4 transmits the memory of gene expression in the parental germ line to offspring and that this memory role is critical for the PGCs to execute a proper germline program
Biosimilar filgrastim vs filgrastim: a multicenter nationwide observational bioequivalence study in patients with chemotherapy-induced neutropenia
Background: We studied the comparative effectiveness of biosimilar filgrastim vs original filgrastim in patients with chemotherapy-induced neutropenia.Patients and methods: This multicenter, observational study was conducted at 14 centers. The study included 337 patients experiencing neutropenia under chemotherapy. Patients were given either filgrastim 30 MIU or 48 MIU (Neupogen (R)) or biosimilar filgrastim 30 MIU (Leucostim (R)). Data regarding age, chemotherapeutic agents used, number of chemotherapy courses, previous diagnosis of neutropenia, neutrophil count of patients after treatment, medications used for the treatment of neutropenia, and duration of neutropenia were collected. Time to absolute neutrophil count (ANC) recovery was the primary efficacy measure.Results: Ambulatory and hospitalized patients comprised 11.3% and 45.1% of the enrolled patients, respectively, and a previous diagnosis of neutropenia was reported in 49.3% of the patients, as well. Neutropenia occurred in 13.7% (n=41), 45.5% (n=136), 27.4% (n=82), 11.4% (n=34), and 2.0% (n=6) of the patients during the first, second, third, fourth, and fifth cycles of chemotherapy, respectively. While the mean neutrophil count was 0.53 +/- 0.48 before treatment, a significant increase to 2.44 +/- 0.66 was observed after treatment (p=0.0001). While 90.3% of patients had a neutrophil count,1.49 before treatment, all patients had a neutrophil count >= 1.50 after treatment. Neutropenia resolved within <= 4 days of filgrastim therapy in 60.1%, 56.7%, and 52.6% of the patients receiving biosimilar filgrastim 30 MIU, original filgrastim 30 MIU, and original filgrastim 48 MIU, respectively. However, there was no significant difference between the three arms (p=0.468). Similarly, time to ANC recovery was comparable between the treatment arms (p=0.332).Conclusion: The results indicate that original filgrastim and biosimilar filgrastim have comparable efficacy in treating neutropenia. Biosimilar filgrastim provides a valuable alternative; however, there is need for further studies comparing the two products in different patient subpopulations
Regenerative effects of peptide nanofibers in an experimental model of Parkinson's disease
Parkinson's disease (PD) is characterized by progressive degeneration of dopaminergic nigrostriatal neurons and reduction in striatal dopamine levels. Although there are few treatment options for PD such as Levodopa, they are used just to relieve and modify the symptoms. There are no therapies available for PD to slow down the degeneration process in the brain and recover the lost function. In this study, we used extracellular matrix (ECM) mimetic peptide amphiphile (PA) nanofibers as a potential therapeutic approach in a PD rat model. We demonstrated the effect of heparan sulfate mimetic and laminin mimetic PA nanofibers on reducing striatal injury and enhancing functional recovery after unilateral striatal injection of 6-hydroxydopamine (6-OHDA). The bioactive self-assembled PA nanofibers significantly reduced forelimb asymmetry, contralateral forelimb akinesia and d-amphetamine-induced rotational behavior in cylinder, stepping and rotation tests, respectively, in 6-OHDA-lesioned rats after 6 weeks. The behavioral improvement with PA nanofiber administration was associated with enhanced striatal dopamine and tyrosine hydroxylase content as well as reduced cleaved-Caspase-3 levels. Histological assessment also showed that PA nanofiber injection to the striatum resulted in better tissue integrity compared to control groups. In addition, PA nanofibers reduced the progressive cell loss in SH-SY5Y cells caused by 6-OHDA treatment. These data showed that the bioactive peptide nanofibers improve neurochemical and behavioral consequences of Parkinsonism in rats and provide a promising new strategy for treatment of PD. Statement of Significance Biomimetic nanomaterials bearing natural bioactive signals which are derived from extracellular matrix components like laminin and heparan sulfates provide promising therapeutic strategies for regeneration of the nervous system. However, no research has been reported exploring the use of biomimetic materials against degeneration in Parkinson's disease. In this work, we investigated potential therapeutic effects of heparan sulfate and laminin mimetic PA nanofibers on reduction of striatal injury in experimental Parkinson's disease model. PA nanofibers enhanced functional recovery associated with enhanced striatal dopamine and tyrosine hydroxylase content as well as reduced cleaved-Caspase-3 levels. Overall, this study shows the improvement in consequences of Parkinsonism in rats and provides a new platform for treatment of Parkinson's disease. © 2016 Acta Materialia Inc
Brucella abortusâinfected platelets modulate the activation of neutrophils
Brucellosis is a contagious disease caused by bacteria of the genus Brucella. Platelets (PLTs) have been widely involved in the modulation of the immune response. We have previously reported the modulation of Brucella abortusâmediated infection of monocytes. As a result, PLTs cooperate with monocytes and increase their inflammatory capacity, promoting the resolution of the infection. Extending these results, in this study we demonstrate that patients with brucellosis present slightly elevated levels of complexes between PLTs and both monocytes and neutrophils. We then assessed whether PLTs were capable of modulating functional aspects of neutrophils. The presence of PLTs throughout neutrophil infection increased the production of interleukinâ8, CD11b surface expression and reactive oxygen species formation, whereas it decreased the expression of CD62L, indicating an activated status of these cells. We next analyzed whether this modulation was mediated by released factors. To discriminate between these options, neutrophils were treated with supernatants collected from B. abortusâinfected PLTs. Our results show that CD11b expression was induced by soluble factors of PLTs but direct contact between cell populations was needed to enhance the respiratory burst. Additionally, B. abortusâinfected PLTs recruit polymorphonuclear (PMN) cells to the site of infection. Finally, the presence of PLTs did not modify the initial invasion of PMN cells by B. abortus but improved the control of the infection at extended times. Altogether, our results demonstrate that PLTs interact with neutrophils and promote a proinflammatory phenotype which could also contribute to the resolution of the infection.Fil: Trotta, Aldana. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Milillo, MarĂa AyelĂ©n. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Serafino, Agustina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Castillo Montañez, Luis Alejandro. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Birnberg Weiss, Federico. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Delpino, MarĂa Victoria. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de InmunologĂa, GenĂ©tica y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de InmunologĂa, GenĂ©tica y Metabolismo; ArgentinaFil: Giambartolomei, Guillermo Hernan. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de InmunologĂa, GenĂ©tica y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de InmunologĂa, GenĂ©tica y Metabolismo; ArgentinaFil: FernĂĄndez, Cecilia Gabriela. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Barrionuevo, Paula. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; Argentin
X chromosome repression by localization of the C. elegans dosage compensation machinery to sites of transcription initiation
Among organisms with chromosome-based mechanisms of sex determination, failure to equalize expression of X-linked genes between the sexes is typically lethal. In C. elegans, XX hermaphrodites halve transcription from each X chromosome to match the output of XO males. Here, we mapped the binding location of the condensin homolog DPY-27 and the zinc finger protein SDC-3, two components of the C. elegans dosage compensation complex (DCC). We observed strong foci of DCC binding on X, surrounded by broader regions of localization. Binding foci, but not adjacent regions of localization, were distinguished by clusters of a 10-bp DNA motif, suggesting a recruitment-and-spreading mechanism for X recognition. The DCC was preferentially bound upstream of genes, suggesting modulation of transcriptional initiation and polymerase-coupled spreading. Stronger DCC binding upstream of genes with high transcriptional activity indicated a mechanism for tuning DCC activity at specific loci. These data aid in understanding how proteins involved in higher-order chromosome dynamics can regulate transcription at individual loci
A stochastic programming approach for chemotherapy appointment scheduling
Chemotherapy appointment scheduling is a challenging problem due to the
uncertainty in pre-medication and infusion durations. In this paper, we
formulate a two-stage stochastic mixed integer programming model for the
chemotherapy appointment scheduling problem under limited availability and
number of nurses and infusion chairs. The objective is to minimize the expected
weighted sum of nurse overtime, chair idle time, and patient waiting time. The
computational burden to solve real-life instances of this problem to optimality
is significantly high, even in the deterministic case. To overcome this burden,
we incorporate valid bounds and symmetry breaking constraints. Progressive
hedging algorithm is implemented in order to solve the improved formulation
heuristically. We enhance the algorithm through a penalty update method, cycle
detection and variable fixing mechanisms, and a linear approximation of the
objective function. Using numerical experiments based on real data from a major
oncology hospital, we compare our solution approach with several scheduling
heuristics from the relevant literature, generate managerial insights related
to the impact of the number of nurses and chairs on appointment schedules, and
estimate the value of stochastic solution to assess the significance of
considering uncertainty
A new approach to treatment of resistant gram-positive infections: potential impact of targeted IV to oral switch on length of stay
BACKGROUND: Patients prescribed intravenous (IV) glycopeptides usually remain in hospital until completion of this treatment. Some of these patients could be discharged earlier if a switch to an oral antibiotic was made. This study was designed to identify the percentage of inpatients currently prescribed IV glycopeptides who could be discharged earlier if a switch to an oral agent was used, and to estimate the number of bed days that could be saved. We also aimed to identify the patient group(s) most likely to benefit, and to estimate the number of days of IV therapy that could be prevented in patients who remained in hospital. METHODS: Patients were included if they were prescribed an IV glycopeptide for 5 days or more. Predetermined IV to oral antibiotic switch criteria and discharge criteria were applied. A multiple logistic regression model was used to identify the characteristics of the patients most likely to be suitable for earlier discharge. RESULTS: Of 211 patients, 62 (29%) could have had a reduced length of stay if they were treated with a suitable oral antibiotic. This would have saved a total of 649 inpatient days (median 5 per patient; range 1â54). A further 31 patients (15%) could have switched to oral therapy as an inpatient thus avoiding IV line use. The patients most likely to be suitable for early discharge were those with skin and soft tissue infection, under the cardiology, cardiothoracic surgery, orthopaedics, general medical, plastic surgery and vascular specialities, with no high risk comorbidity and less than five other regularly prescribed drugs. CONCLUSION: The need for glycopeptide therapy has a significant impact on length of stay. Effective targeting of oral antimicrobials could reduce the need for IV access, allow outpatient treatment and thus reduce the length of stay in patients with infections caused by antibiotic resistant gram-positive bacteria
Scientometric Analysis and Combined Density-Equalizing Mapping of Environmental Tobacco Smoke (ETS) Research
Background: Passive exposure to environmental tobacco smoke (ETS) is estimated to exert a major burden of disease. Currently, numerous countries have taken legal actions to protect the population against ETS. Numerous studies have been conducted in this field. Therefore, scientometric methods should be used to analyze the accumulated data since there is no such approach available so far. Methods and Results: A combination of scientometric methods and novel visualizing procedures were used, including density-equalizing mapping and radar charting techniques. 6,580 ETS-related studies published between 1900 and 2008 were identified in the ISI database. Using different scientometric approaches, a continuous increase of both quantitative and qualitative parameters was found. The combination with density-equalizing calculations demonstrated a leading position of the United States (2,959 items published) in terms of quantitative research activities. Charting techniques demonstrated that there are numerous bi- and multilateral networks between different countries and institutions in this field. Again, a leading position of American institutions was found. Conclusions: This is the first comprehensive scientometric analysis of data on global scientific activities in the field o
- âŠ