314 research outputs found

    Measuring Learners’ Attitudes Toward Team Projects: Scale Development Through Exploratory And Confirmatory Factor Analyses

    Get PDF
    Team projects are increasingly used in engineering courses. Students may develop attitudes toward team projects from prior experience, and their attitudinal responses could influence their performance during team project-based learning in the future. Thus, instructors need to measure students’ attitudes toward team projects during their learner analysis to better understand students’ characteristics and be proactive in providing effective strategies to help students succeed in a team project environment. The purpose of our study was to develop a survey instrument that measures students’ attitudes toward team projects to be used as a learner analysis tool, derived from our local practical needs and due to the lack of appropriate existing instruments. The study was conducted at a mid-sized university in the northwestern United States during 2015-2016. After we generated an initial pool of 50 items, we administered the survey to 225 undergraduate engineering students, performed exploratory factor analysis on the data, and arrived at a four-factor solution of 20 items and a three-factor solution of 14 items. We tested the two competing solutions with another set of 330 undergraduate engineering students. Based on our confirmatory factor analysis results, we arrived at a three-factor model of 12 items as the finalized scale, which measures: (a) professional capacity building, (b) learning and problem-solving skills development, and (c) workload challenges. We call the scale, the Attitudes toward Team Projects Scale on Capacity, Learning, and Workload (ATPS-CLW). Suggestions for future research include continuous development, testing, and validation of the scale

    Effectiveness and Adoption of a Drawing-to-Learn Study Tool for Recall and Problem Solving: Minute Sketches with Folded Lists

    Get PDF
    Drawing by learners can be an effective way to develop memory and generate visual models for higher-order skills in biology, but students are often reluctant to adopt drawing as a study method. We designed a nonclassroom intervention that instructed introductory biology college students in a drawing method, minute sketches in folded lists (MSFL), and allowed them to self-assess their recall and problem solving, first in a simple recall task involving non-European alphabets and later using unfamiliar biology content. In two preliminary ex situ experiments, students had greater recall on the simple learning task, non-European alphabets with associated phonetic sounds, using MSFL in comparison with a preferred method, visual review (VR). In the intervention, students studying using MSFL and VR had similar to 50-80% greater recall of content studied with MSFL and, in a subset of trials, better performance on problem-solving tasks on biology content. Eight months after beginning the intervention, participants had shifted self-reported use of drawing from 2% to 20% of study time. For a small subset of participants, MSFL had become a preferred study method, and 70% of participants reported continued use of MSFL. This brief, low-cost intervention resulted in enduring changes in study behavior

    The relationship between anxiety and acute mountain sickness.

    Get PDF
    INTRODUCTION: Whilst the link between physical factors and risk of high altitude (HA)-related illness and acute mountain sickness (AMS) have been extensively explored, the influence of psychological factors has been less well examined. In this study we aimed to investigate the relationship between 'anxiety and AMS risk during a progressive ascent to very HA. METHODS: Eighty health adults were assessed at baseline (848m) and over 9 consecutive altitudes during a progressive trek to 5140m. HA-related symptoms (Lake Louise [LLS] and AMS-C Scores) and state anxiety (State-Trait-Anxiety-Score [STAI Y-1]) were examined at each altitude with trait anxiety (STAI Y-2) at baseline. RESULTS: The average age was 32.1 ± 8.3 years (67.5% men). STAI Y-1 scores fell from 848m to 3619m, before increasing to above baseline scores (848m) at ≥4072m (p = 0.01). STAI Y-1 scores correlated with LLS (r = 0.31; 0.24-0.3; P<0.0001) and AMS-C Scores (r = 0.29; 0.22-0.35; P<0.0001). There was significant main effect for sex (higher STAI Y-1 scores in women) and altitude with no sex-x-altitude interaction on STAI Y-1 Scores. Independent predictors of significant state anxiety included female sex, lower age, higher heart rate and increasing LLS and AMS-C scores (p<0.0001). A total of 38/80 subjects (47.5%) developed AMS which was mild in 20 (25%) and severe in 18 (22.5%). Baseline STAI Y-2 scores were an independent predictor of future severe AMS (B = 1.13; 1.009-1.28; p = 0.04; r2 = 0.23) and STAI Y-1 scores at HA independently predicted AMS and its severity. CONCLUSION: Trait anxiety at low altitude was an independent predictor of future severe AMS development at HA. State anxiety at HA was independently associated with AMS and its severity

    Conversion coefficients for superheavy elements

    Full text link
    In this paper we report on internal conversion coefficients for Z = 111 to Z = 126 superheavy elements obtained from relativistic Dirac-Fock (DF) calculations. The effect of the atomic vacancy created during the conversion process has been taken into account using the so called "Frozen Orbital" approximation. The selection of this atomic model is supported by our recent comparison of experimental and theoretical conversion coefficients across a wide range of nuclei. The atomic masses, valence shell electron configurations, and theoretical atomic binding energies required for the calculations were adopted from a critical evaluation of the published data. The new conversion coefficient data tables presented here cover all atomic shells, transition energies from 1 keV up to 6000 keV, and multipole orders of 1 to 5. A similar approach was used in our previous calculations [1] for Z = 5 - 110.Comment: Accepted for publication in Atomic Data and Nuclear Data Table
    corecore