17 research outputs found

    How are proteins reduced in the endoplasmic reticulum?

    Get PDF
    The reversal of thiol oxidation in proteins within the endoplasmic reticulum (ER) is crucial for protein folding, degradation, chaperone function, and the ER stress response. Our understanding of this process is generally poor but progress has been made. Enzymes performing the initial reduction of client proteins, as well as the ultimate electron donor in the pathway, have been identified. Most recently, a role for the cytosol in ER protein reduction has been revealed. Nevertheless, how reducing equivalents are transferred from the cytosol to the ER lumen remains an open question. We review here why proteins are reduced in the ER, discuss recent data on catalysis of steps in the pathway, and consider the implications for redox homeostasis within the early secretory pathway

    Redox signaling via the molecular chaperone BiP protects cells against endoplasmic reticulum-derived oxidative stress

    Get PDF
    Oxidative protein folding in the endoplasmic reticulum (ER) has emerged as a potentially significant source of cellular reactive oxygen species (ROS). Recent studies suggest that levels of ROS generated as a byproduct of oxidative folding rival those produced by mitochondrial respiration. Mechanisms that protect cells against oxidant accumulation within the ER have begun to be elucidated yet many questions still remain regarding how cells prevent oxidant-induced damage from ER folding events. Here we report a new role for a central well-characterized player in ER homeostasis as a direct sensor of ER redox imbalance. Specifically we show that a conserved cysteine in the lumenal chaperone BiP is susceptible to oxidation by peroxide, and we demonstrate that oxidation of this conserved cysteine disrupts BiP's ATPase cycle. We propose that alteration of BiP activity upon oxidation helps cells cope with disruption to oxidative folding within the ER during oxidative stress.Cornell UniversityNational Institutes of Health (U.S.) (Grant GM46941

    Balanced Ero1 activation and inactivation establishes ER redox homeostasis

    Get PDF
    The endoplasmic reticulum (ER) provides an environment optimized for oxidative protein folding through the action of Ero1p, which generates disulfide bonds, and Pdi1p, which receives disulfide bonds from Ero1p and transfers them to substrate proteins. Feedback regulation of Ero1p through reduction and oxidation of regulatory bonds within Ero1p is essential for maintaining the proper redox balance in the ER. In this paper, we show that Pdi1p is the key regulator of Ero1p activity. Reduced Pdi1p resulted in the activation of Ero1p by direct reduction of Ero1p regulatory bonds. Conversely, upon depletion of thiol substrates and accumulation of oxidized Pdi1p, Ero1p was inactivated by both autonomous oxidation and Pdi1p-mediated oxidation of Ero1p regulatory bonds. Pdi1p responded to the availability of free thiols and the relative levels of reduced and oxidized glutathione in the ER to control Ero1p activity and ensure that cells generate the minimum number of disulfide bonds needed for efficient oxidative protein folding.National Institutes of Health (U.S.) (GM46941

    New insights into oxidative folding

    Get PDF
    The oxidoreductase ERO1 (endoplasmic reticulum [ER] oxidoreductin 1) is thought to be crucial for disulfide bond formation in the ER. In this issue, Zito et al. (2010. J. Cell Biol. doi:10.1083/jcb.200911086) examine the division of labor between the two mammalian isoforms of ERO1 (ERO1-ι and -β) in oxidative folding. Their analysis reveals a selective role for ERO1-β in insulin production and a surprisingly minor contribution for either ERO1 isoform on immunoglobulin folding and secretion

    Disulfide Transfer between Two Conserved Cysteine Pairs Imparts Selectivity to Protein Oxidation by Ero1

    No full text
    The membrane-associated flavoprotein Ero1p promotes disulfide bond formation in the endoplasmic reticulum (ER) by selectively oxidizing the soluble oxidoreductase protein disulfide isomerase (Pdi1p), which in turn can directly oxidize secretory proteins. Two redox-active disulfide bonds are essential for Ero1p oxidase activity: Cys100-Cys105 and Cys352-Cys355. Genetic and structural data indicate a disulfide bond is transferred from Cys100-Cys105 directly to Pdi1p, whereas a Cys352-Cys355 disulfide bond is used to reoxidize the reduced Cys100-Cys105 pair through an internal thiol-transfer reaction. Electron transfer from Cys352-Cys355 to molecular oxygen, by way of a flavin cofactor, maintains Cys352-Cys355 in an oxidized form. Herein, we identify a mixed disulfide species that confirms the Ero1p intercysteine thiol-transfer relay in vivo and identify Cys105 and Cys352 as the cysteines that mediate thiol-disulfide exchange. Moreover, we describe Ero1p mutants that have the surprising ability to oxidize substrates in the absence of Cys100-Cys105. We show the oxidase activity of these mutants results from structural changes in Ero1p that allow substrates increased access to Cys352-Cys355, which are normally buried beneath the protein surface. The altered activity of these Ero1p mutants toward selected substrates leads us to propose the catalytic mechanism involving transfer between cysteine pairs evolved to impart substrate specificity to Ero1p

    Disrupted Hydrogen-Bond Network and Impaired ATPase Activity in an Hsc70 Cysteine Mutant

    No full text
    The ATPase domain of members of the 70 kDa heat shock protein (Hsp70) family shows a high degree of sequence, structural, and functional homology across species. A broadly conserved residue within the Hsp70 ATPase domain that captured our attention is an unpaired cysteine, positioned proximal to the site of nucleotide binding. Prior studies of several Hsp70 family members show this cysteine is not required for Hsp70 ATPase activity, yet select amino acid replacements of the cysteine can dramatically alter ATP hydrolysis. Moreover, post-translational modification of the cysteine has been reported to limit ATP hydrolysis for several Hsp70s. To better understand the underlying mechanism for how perturbation of this noncatalytic residue modulates Hsp70 function, we determined the structure for a cysteine-to-tryptophan mutation in the constitutively expressed, mammalian Hsp70 family member Hsc70. Our work reveals that the steric hindrance produced by a cysteine-to-tryptophan mutation disrupts the hydrogen-bond network within the active site, resulting in a loss of proper catalytic magnesium coordination. We propose that a similarly altered active site is likely observed upon post-translational oxidation. We speculate that the subtle changes we detect in the hydrogen-bonding network may relate to the previously reported observation that cysteine oxidation can influence Hsp70 interdomain communication
    corecore