5 research outputs found

    NPHP4 Variants Are Associated With Pleiotropic Heart Malformations

    Get PDF
    Rationale: Congenital heart malformations are a major cause of morbidity and mortality, especially in young children. Failure to establish normal left-right (L-R) asymmetry often results in cardiovascular malformations and other laterality defects of visceral organs. Objective: To identify genetic mutations causing cardiac laterality defects. Methods and Results: We performed a genome-wide linkage analysis in patients with cardiac laterality defects from a consanguineous family. The patients had combinations of defects that included dextrocardia, transposition of great arteries, double-outlet right ventricle, atrioventricular septal defects, and caval vein abnormalities. Sequencing of positional candidate genes identified mutations in NPHP4. We performed mutation analysis of NPHP4 in 146 unrelated patients with similar cardiac laterality defects. Forty-one percent of these patients also had laterality defects of the abdominal organs. We identified 8 additional missense variants that were absent or very rare in control subjects. To study the role of nphp4 in establishing L-R asymmetry, we used antisense morpholinos to knockdown nphp4 expression in zebrafish. Depletion of nphp4 disrupted L-R patterning as well as cardiac and gut laterality. Cardiac laterality defects were partially rescued by human NPHP4 mRNA, whereas mutant NPHP4 containing genetic variants found in patients failed to rescue. We show that nphp4 is involved in the formation of motile cilia in Kupffer's vesicle, which generate asymmetrical fluid flow necessary for normal L-R asymmetry. Conclusions: NPHP4 mutations are associated with cardiac laterality defects and heterotaxy. In zebrafish, nphp4 is essential for the development and function of Kupffer's vesicle cilia and is required for global L-R patterning

    A missense variant in the nuclear export signal of the FMR1 gene causes intellectual disability

    No full text
    Fragile X syndrome (FXS) is the most common monogenetic cause of intellectual disability and autism spectrum disorders. Mostly, FXS is caused by transcriptional silencing of the FMR1 gene due to a repeat expansion in the 5' UTR, and consequently lack of the protein product FMRP. However, in rare cases FXS is caused by other types of variants in the FMR1 gene.We describe a missense variant in the FMR1 gene, identified through whole-exome sequencing, in a boy with intellectual disability and behavioral problems. The variant is located in the FMRP's nuclear export signal (NES). We performed expression and localization studies of the variant in hair roots and HEK293 cells. Our results show normal expression but significant retention of the FMRP in the cells' nucleus. This finding suggests a possible FMRP reduction at its essential functional sites in the dendrites and the synaptic compartments and possible interference of other cellular processes in the nucleus. Together, this might lead to a FXS phenotype in the boy.Genetics of disease, diagnosis and treatmen

    Hereditary Pick's disease with the G272V tau mutation shows predominant three-repeat tau pathology

    Get PDF
    Frontotemporal dementia and parkinsonism linked to chromosome 17 have been associated with mutations in the microtubule associated protein tau (MAPT or tau) gene. This disorder is characterized by a large spectrum of neuronal and glial tau lesions in different brain regions. Pick bodies were found in a family with hereditary Pick's disease with the G272V mutation and in several families with other tau mutations in exons 9 and 11-13. The biochemical composition of Pick bodies varies between these mutations. Until recently, no detailed biochemical characterization of G272V brain material was done owing to unavailability of fresh frozen brain material. We now report a detailed study using the immunohistochemistry, western blots and electron microscopy of two brains with the G272V mutation that recently became available. Both brains showed severe neuronal loss in the temporal cortex, whereas in the frontal cortex the loss was less; and abundant Pick bodies in the dentate gyrus of the hippocampus, and caudate nucleus. The Pick bodies consisted exclusively of three-repeat (3R) isoforms, as was demonstrated by isoform-specific antibodies and supported by western blot analysis of sarkosyl-insoluble tau. These observations confirm that this family diagnosed with hereditary Pick disease meets all the criteria for this condition, including the presence of Pick bodies that are unphosphorylated at Se

    Elevated Fmr1 mRNA levels and reduced protein expression in a mouse model with an unmethylated Fragile X full mutation

    No full text
    The human FMR1 gene contains a CGG repeat in its 5′ untranslated region. The repeat length in the normal population is polymorphic (5–55 CGG repeats). Lengths beyond 200 CGGs (full mutation) result in the absence of the FMR1 gene product, FMRP, through abnormal methylation and gene silencing. This causes Fragile X syndrome, the most common inherited form of mental retardation. Elderly carriers of the premutation, defined as a repeat length between 55 and 200 CGGs, can develop a progressive neurodegenerative syndrome: Fragile X-associated tremor/ataxia syndrome (FXTAS). In FXTAS, FMR1 mRNA levels are elevated and it has been hypothesised that FXTAS is caused by a pathogenic RNA gain-offunction mechanism. We have developed a knock in mouse model carrying an expanded CGG repeat (98 repeats), which shows repeat instability and displays biochemical, phenotypic and neuropathological characteristics of FXTAS. Here, we report further repeat instability, up to 230 CGGs. An expansion bias was observed, with the largest expansion being 43 CGG units and the largest contraction 80 CGG repeats. In humans, this length would be considered a full mutation and would be expected to result in gene silencing. Mice carrying long repeats (∼230 CGGs) display elevated mRNA levels and decreased FMRP levels, but absence of abnormal methylation, suggesting that modelling the Fragile X full mutation in mice requires additional repeats or other genetic manipulation
    corecore