151 research outputs found
Estimation of utility weights for human papilloma virus-related health states according to disease severity
Scenarios for the different HPV-related health states. (DOCX 38 kb
Reciprocal Relationship Between Depression and Internet Gaming Disorder in Children: A 12-month Follow-Up of the iCURE Study Using Cross-Lagged Path Analysis
Objectives: Previous studies have reported an association between Internet gaming disorder (IGD) and depression, but the directionality of the relationship remains unclear. Therefore, we examined the reciprocal relationship between level of depressive symptoms and IGD among children in a longitudinal study. Methods: Research panels for this study consisted of 366 elementary-school students in the iCURE study. All participants were current Internet users, so they could be considered an at-risk population for IGD. Self-reported severity of IGD features and level of depression were assessed by the Internet Game Use-Elicited Symptom Screen and Children’s Depression Inventory, respectively. Follow-up assessment was completed after 12 months. We fitted cross-lagged structural equation models to investigate the association between the two variables at two time points contemporaneously. Results: The cross-lagged analysis revealed that level of depression at baseline significantly predicted severity of IGD features at the 12-month follow-up (β = 0.15, p = .003). Severity of IGD features at baseline also significantly predicted level of depression at the 12-month follow-up (β = 0.11, p = .018), controlling for possible confounding factors. Conclusions: The cross-lagged path analysis indicates a reciprocal relationship between severity of IGD features and level of depressive symptoms. Understanding the reciprocal relationship between depressive symptoms and severity of IGD features can assist in interventions to prevent both conditions. These findings provide theoretical support for prevention and remediation plans for IGD and depressive symptoms among children
Polymeric tandem organic light-emitting diodes using a self-organized interfacial layer
The authors have demonstrated efficient polymeric tandem organic light-emitting diodes (OLEDs) with a self-organized interfacial layer, which was formed by differences in chemical surface energy. Hydrophilic poly(styrene sulfonate)-doped poly(3,4-ethylene dioxythiophene) (PEDOT:PSS) was spin coated onto the hydrophobic poly(9,9-dyoctilfluorene) (PFO) surface and a PEDOT:PSS bubble or dome was built as an interfacial layer. The barrier heights of PEDOT:PSS and PFO in the two-unit tandem OLED induced a charge accumulation at the interface in the heterojunction and thereby created exciton recombination at a much higher level than in the one-unit reference. This effect was confirmed in both the hole only and the electron only devices. (c) 2008 American Institute of Physicsopen8
A Newly Developed Pericardial Tuberculoma During Antituberculous Therapy
Tuberculosis generally affects the respiratory tract. In developing nations, the pericardium is the most common location of extrapulmonary tuberculosis; however, tuberculous pericarditis rarely appears as a localized mass or tuberculoma. We present here a case of a 62-year-old woman with pericardial tuberculoma. She had a history of effusive tuberculous pericarditis and drainage. Because she had taken regular medication over a period of six months, the pericardial mass with an adjacent lung nodule newly detected on the chest radiogram was initially suspected of being invasive lung cancer. Prior to pathologic confirmation, precise information from imaging tests, including computed tomography, magnetic resonance imaging, and positron emission tomography-computed tomography are helpful when making decisions regarding which methods should be used for surgical approach and treatment. Through imaging, our case showed typical features of pericardial tuberculoma and a favorable clinical course after two months with a change in antituberculous therapy
Flash Pulmonary Edema in a Patient With Unilateral Renal Artery Stenosis and Bilateral Functioning Kidneys
Flash pulmonary edema typically exhibits sudden onset and resolves rapidly. It generally is associated with bilateral renal artery stenosis or unilateral stenosis in conjunction with a single functional kidney. We describe a patient who presented with flash pulmonary edema treated by percutaneous therapy with stent implantation. Our case is unique in that the flash pulmonary edema occurred in the setting of unilateral renal artery stenosis with bilateral functioning kidneys
Intravascular Ultrasound-Guided Troubleshooting in a Large Hematoma Treated With Fenestration Using a Cutting Balloon
Intramural hematoma formation is not a well-studied complication of percutaneous coronary intervention. We describe a patient with stable angina who developed an intramural hematoma during elective percutaneous coronary intervention (PCI) in the right coronary artery (RCA). Total occlusion with dense dye staining developed a long way from the distal RCA, near the posterior descending artery bifurcation site. The true lumen was compressed by the enlarged, tense, false lumen. The patient was successfully treating with intravascular ultrasound-guided fenestration using a cutting balloon, and a stent was implanted in the distal RCA
Low-dimensional iodide perovskite nanocrystals enable efficient red emission
We report herein a simple ligand-assisted reprecipitation method at room temperature to synthesize mixed-cation hybrid organic-inorganic perovskite nanocrystals with low structural dimensionality. The emission wavelength of iodide-based perovskites is thus tuned from the near-infrared to the red part of the visible spectrum. While this is mostly achieved in the literature by addition of bromide, we demonstrate here a controllable blueshift of the band gap by varying the chain length of the alkylammonium ligands. Furthermore, an antisolvent washing step was found to be crucial to purify the samples and obtain single-peak photoluminescence with a narrow linewidth. The so-formed nanocrystals exhibit high and stable photoluminescence quantum yields exceeding 90% over 500 hours, making these materials ideal for light-emitting applications
Superior outcomes and high-risk features with carfilzomib, lenalidomide, and dexamethasone combination therapy for patients with relapsed and refractory multiple myeloma: Results of the multicenter KMMWP2201 study
Carfilzomib, lenalidomide, and dexamethasone (KRd) combination therapy improves the survival of patients with relapsed and/or refractory multiple myeloma (RRMM). Nonetheless, evidence on the use of KRd in Asian populations remains scarce. Accordingly, this study aimed at investigating this regimen’s efficacy in a large group of patients. This retrospective study included patients with RRMM who were treated with KRd at 21 centers between February 2018 and October 2020. Overall, 364 patients were included (median age: 63 years). The overall response rate was 90% in responseevaluable patients, including 69% who achieved a very good partial response or deeper responses. With a median follow-up duration of 34.8 months, the median progression-free survival (PFS) was 23.4 months and overall survival (OS) was 59.5 months. Among adverse factors affecting PFS, highrisk cytogenetics, extramedullary disease, and doubling of monoclonal protein within 2 to 3 months prior to start of KRd treatment significantly decreased PFS and overall survival (OS) in multivariate analyses. Patients who underwent post-KRd stem cell transplantation (i.e.delayed transplant) showed prolonged PFS and OS. Grade 3 or higher adverse events (AEs) were observed in 56% of the patients, and non-fatal or fatal AE’s that resulted in discontinuation of KRd were reported in 7% and 2% of patients, respectively. Cardiovascular toxicity was comparable to that reported in the ASPIRE study. In summary, KRd was effective in a large real-world cohort of patients with RRMM with long-term follow-up. These findings may further inform treatment choices in the treatment of patients with RRMM
AI is a viable alternative to high throughput screening: a 318-target study
: High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
- …