53 research outputs found

    Novel PTC Composites for Temperature Sensors (and Related Applications)

    Get PDF
    This chapter presents a brief description of conductive polymer composites in general, with more attention paid to those exhibiting abrupt change of resistivity when temperature raises, associated with PTC and NTC (respectively, positive and negative temperature coefficient of resistivity) effects. These materials are “smart” because they can adapt their electrical behavior to environmental characteristics, hence being suitable for temperature sensors, smart heating devices, safe batteries, and resettable fuses. As compared to NTC, the applications of PTC materials are more numerous, because the abrupt increase of resistivity with temperature rise allows the current and temperature to be naturally limited. The PTC effect and the factors controlling its quality, e.g., repeatability, intensity, switching temperature, and subsequent NTC effect, are discussed from the point of view of the influence of the nature of polymeric matrix, conductive fillers, and applied treatments. Increased attention is paid to composites with conductive carbonaceous fillers, and these materials being of great interest because they have considerably lower density than metals, are easier to process, and can impart surprising mechanical and electrical properties to polymer matrices. Examples and applications of temperature sensors based on PTC composite materials, applications, and perspective aspects are discussed within the chapter

    Thermal degradation assessment of Kraft paper in power transformers insulated with natural esters

    Get PDF
    Kraft paper in combination with dielectric oil is the most common as insulation system used in power transformers. The most used oil in power transformers is mineral oil. However, dielectric oils based on natural esters possess some advantages in comparison with mineral oil such as higher biodegradability, fire safety and availability. Therefore, they might be the most ideal substitute for mineral oil. The introduction of a new material requires the evaluation of its degradation rate because this determines transformers’ life span. In order to assess the performance of new insulating systems based on vegetable oils, simulations to obtain the hot-spot temperatures in power transformers using vegetable oils and controlled laboratory experiments of ageing were carried out. The reason is that hot spot temperature inside windings of the oil-immersed power transformers is one of the main manifestations of the thermal stress which leads to aging of insulation systems.The research leading to these results has received funding from multiple sources during years but we would specifically like to acknowledge the support received in the later stages from the Spanish Plan Estatal de I+D under the grant agreement DPI2013- 43897-P

    Impact of Oxygen Transport Properties on Polypropylene Thermal Oxidation, Part 1: Effect of Oxygen Solubility

    Get PDF
    A general kinetic model is proposed to describe the polypropylene thermal oxidation of thin polypropylene films in a wide range of temperatures (from 60 to 200°C) and oxygen partial pressures (from 0.02 to 5 MPa) using a single set of parameters. This model was calibrated with several series of experimental data including analyses of primary (hydroperoxides) and secondary oxidation products (carbonyl species), and subsequent changes in macromolecular properties (average molecular masses). It predicts the experimental data previously published in the literature in terms of induction times and maximal oxidation rates. The variability of the oxygen solubility coefficient allows to explain the scattering of induction times and oxidation rates among the whole iPP family, but also the dependence of this latter quantity with oxygen partial pressure. This variability is presumably due to iPP polymorphism in the temperature range where oxygen permeability is commonly measured. It is concluded that the kinetic model can be used to study the direct effect of iPP morphology on its thermal oxidation kinetics (chemistry of oxidation)

    Polymer Composites with Self-Regulating Temperature Behavior: Properties and Characterization

    No full text
    A novel conductive composite material with homogeneous binary polymer matrix of HDPE (HD) and LLDPE (LLD), mixed with conductive filler consisting of carbon black (CB) and graphite (Gr), was tested against a HDPE composite with a similar conductive filler. Even the concentration of the conductive filler was deliberately lower for (CB + Gr)/(LLD + HD), and the properties of this composite are comparable or better to those of (CB + Gr)/HD. The kinetic parameters of the ρ-T curves and from the DSC curves indicate that the resistivity peak is obtained when the polymer matrix is fully melted. When subjected to repeated thermal cycles, the composite (CB + Gr)/(LLD + HD) presented a better electrical behavior than composite CB + Gr)/HD, with an increase in resistivity (ρmax) values with the number of cycles, as well as less intense NTC (Negative Temperature Coefficient) effects, both for the crosslinked and thermoplastic samples. Radiation crosslinking led to increased ρmax values, as well as to inhibition of NTC effects in both cases, thus having a clear beneficial effect. Limitation effects of surface temperature and current intensity through the sample were observed at different voltages, enabling the use of these materials as self-regulating heating elements at various temperatures below the melting temperature. The procedure based on physical mixing of the components appears more efficient in imparting lower resistivity in solid state and high PTC (Positive Temperature Coefficient) effects to the composites. This effect is probably due to the concentration of the conductive particles at the surface of the polymer domains, which would facilitate the formation of the conductive paths. Further work is still necessary to optimize both the procedure of composite preparation and the properties of such materials

    Investigations of a mechanically failed cable insulation used in indoor conditions

    No full text
    This paper presents the investigation work on different polymeric materials used as insulation materials of conductors in a multicore instrumentation cable. Among differently colored materials, only the white one presented cracks after a few years of use. Isothermal and non-isothermal DSC measurements were performed on initial (non-used) and aged (in service used or laboratory aged) materials as well as on raw materials in order to characterize their stability and the ageing state after storage, use in service or laboratory ageing. As shown by the oxidation induction time values, a pronounced antioxidant loss occurred for all materials during storage or service; plus a strong effect of the ambient light on stability was observed for the white insulation material. Around 3\% of filler, consisting mainly of TiO(2) particles (as revealed by SEM-XRF elemental analysis), was found in the white material. The higher degradability of the white material can be related to both the photocatalytic effect of the TiO(2) particles and rapid loss of stabilizers. (C) 2010 Elsevier Ltd. All rights reserved

    Polymer Composites with Self-Regulating Temperature Behavior: Properties and Characterization

    No full text
    A novel conductive composite material with homogeneous binary polymer matrix of HDPE (HD) and LLDPE (LLD), mixed with conductive filler consisting of carbon black (CB) and graphite (Gr), was tested against a HDPE composite with a similar conductive filler. Even the concentration of the conductive filler was deliberately lower for (CB + Gr)/(LLD + HD), and the properties of this composite are comparable or better to those of (CB + Gr)/HD. The kinetic parameters of the ρ-T curves and from the DSC curves indicate that the resistivity peak is obtained when the polymer matrix is fully melted. When subjected to repeated thermal cycles, the composite (CB + Gr)/(LLD + HD) presented a better electrical behavior than composite CB + Gr)/HD, with an increase in resistivity (ρmax) values with the number of cycles, as well as less intense NTC (Negative Temperature Coefficient) effects, both for the crosslinked and thermoplastic samples. Radiation crosslinking led to increased ρmax values, as well as to inhibition of NTC effects in both cases, thus having a clear beneficial effect. Limitation effects of surface temperature and current intensity through the sample were observed at different voltages, enabling the use of these materials as self-regulating heating elements at various temperatures below the melting temperature. The procedure based on physical mixing of the components appears more efficient in imparting lower resistivity in solid state and high PTC (Positive Temperature Coefficient) effects to the composites. This effect is probably due to the concentration of the conductive particles at the surface of the polymer domains, which would facilitate the formation of the conductive paths. Further work is still necessary to optimize both the procedure of composite preparation and the properties of such materials

    On the Use of Oxidation Induction Time as a Kinetic Parameter for Condition Monitoring and Lifetime Evaluation under Ionizing Radiation Environments

    No full text
    The durability of polymeric materials is closely linked to their degradation under specific operating conditions when different stressors—general or specific, such as high temperature, sunlight or ionizing radiation, solvents, or mechanical stresses—act simultaneously, causing degradation. In the case of electrical cables, the durability of the electrically insulating materials used in their construction is an important parameter to ensure their operational security. In this work, we studied the degradation state of various types of electrical insulating materials from cables used in particle acceleration systems under European Organization for Nuclear Research (CERN) conditions (e.g., Super Proton Synchrotron, SPS) as a function of time and irradiation dose. A simple kinetic model was proposed based on the exponential decrease in the antioxidant amount in polymeric insulations. The onset oxidation time (OIT) values, used as an indicator of antioxidant concentration, were obtained from isothermal differential scanning calorimetry (DSC) and chemiluminescence (CL) measurements. Fourier transform infrared (FTIR) measurements were used to assess the degradation state and identify polymeric materials. The practical applicability of such a model in diagnosing degradation and in the subsequent evaluation of the remaining service life is of interest, as it can be adapted to a broad range of operating conditions and materials
    • 

    corecore