9 research outputs found

    IL-23 stabilizes an effector Treg cell program in the tumor microenvironment

    Get PDF
    Interleukin-23 (IL-23) is a proinflammatory cytokine mainly produced by myeloid cells that promotes tumor growth in various preclinical cancer models and correlates with adverse outcomes. However, as to how IL-23 fuels tumor growth is unclear. Here, we found tumor-associated macrophages to be the main source of IL-23 in mouse and human tumor microenvironments. Among IL-23-sensing cells, we identified a subset of tumor-infiltrating regulatory T (T-reg) cells that display a highly suppressive phenotype across mouse and human tumors. The use of three preclinical models of solid cancer in combination with genetic ablation of Il23r in T-reg cells revealed that they are responsible for the tumor-promoting effect of IL-23. Mechanistically, we found that IL-23 sensing represents a crucial signal driving the maintenance and stabilization of effector T-reg cells involving the transcription factor Foxp3. Our data support that targeting the IL-23/IL-23R axis in cancer may represent a means of eliciting antitumor immunity

    High-dimensional analysis of 16 SARS-CoV-2 vaccine combinations reveals lymphocyte signatures correlating with immunogenicity

    Full text link
    The range of vaccines developed against severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) provides a unique opportunity to study immunization across different platforms. In a single-center cohort, we analyzed the humoral and cellular immune compartments following five coronavirus disease 2019 (COVID-19) vaccines spanning three technologies (adenoviral, mRNA and inactivated virus) administered in 16 combinations. For adenoviral and inactivated-virus vaccines, heterologous combinations were generally more immunogenic compared to homologous regimens. The mRNA vaccine as the second dose resulted in the strongest antibody response and induced the highest frequency of spike-binding memory B cells irrespective of the priming vaccine. Priming with the inactivated-virus vaccine increased the SARS-CoV-2-specific T cell response, whereas boosting did not. Distinct immune signatures were elicited by the different vaccine combinations, demonstrating that the immune response is shaped by the type of vaccines applied and the order in which they are delivered. These data provide a framework for improving future vaccine strategies against pathogens and cancer

    Effect of Intermediate-Dose vs Standard-Dose Prophylactic Anticoagulation on Thrombotic Events, Extracorporeal Membrane Oxygenation Treatment, or Mortality among Patients with COVID-19 Admitted to the Intensive Care Unit: The INSPIRATION Randomized Clinical Trial

    Get PDF
    Importance: Thrombotic events are commonly reported in critically ill patients with COVID-19. Limited data exist to guide the intensity of antithrombotic prophylaxis. Objective: To evaluate the effects of intermediate-dose vs standard-dose prophylactic anticoagulation among patients with COVID-19 admitted to the intensive care unit (ICU). Design, Setting, and Participants: Multicenter randomized trial with a 2 � 2 factorial design performed in 10 academic centers in Iran comparing intermediate-dose vs standard-dose prophylactic anticoagulation (first hypothesis) and statin therapy vs matching placebo (second hypothesis; not reported in this article) among adult patients admitted to the ICU with COVID-19. Patients were recruited between July 29, 2020, and November 19, 2020. The final follow-up date for the 30-day primary outcome was December 19, 2020. Interventions: Intermediate-dose (enoxaparin, 1 mg/kg daily) (n = 276) vs standard prophylactic anticoagulation (enoxaparin, 40 mg daily) (n = 286), with modification according to body weight and creatinine clearance. The assigned treatments were planned to be continued until completion of 30-day follow-up. Main Outcomes and Measures: The primary efficacy outcome was a composite of venous or arterial thrombosis, treatment with extracorporeal membrane oxygenation, or mortality within 30 days, assessed in randomized patients who met the eligibility criteria and received at least 1 dose of the assigned treatment. Prespecified safety outcomes included major bleeding according to the Bleeding Academic Research Consortium (type 3 or 5 definition), powered for noninferiority (a noninferiority margin of 1.8 based on odds ratio), and severe thrombocytopenia (platelet count <20 �103/µL). All outcomes were blindly adjudicated. Results: Among 600 randomized patients, 562 (93.7) were included in the primary analysis (median interquartile range age, 62 50-71 years; 237 42.2% women). The primary efficacy outcome occurred in 126 patients (45.7%) in the intermediate-dose group and 126 patients (44.1%) in the standard-dose prophylaxis group (absolute risk difference, 1.5% 95% CI,-6.6% to 9.8%; odds ratio, 1.06 95% CI, 0.76-1.48; P =.70). Major bleeding occurred in 7 patients (2.5%) in the intermediate-dose group and 4 patients (1.4%) in the standard-dose prophylaxis group (risk difference, 1.1% 1-sided 97.5% CI,-� to 3.4%; odds ratio, 1.83 1-sided 97.5% CI, 0.00-5.93), not meeting the noninferiority criteria (P for noninferiority >.99). Severe thrombocytopenia occurred only in patients assigned to the intermediate-dose group (6 vs 0 patients; risk difference, 2.2% 95% CI, 0.4%-3.8%; P =.01). Conclusions and Relevance: Among patients admitted to the ICU with COVID-19, intermediate-dose prophylactic anticoagulation, compared with standard-dose prophylactic anticoagulation, did not result in a significant difference in the primary outcome of a composite of adjudicated venous or arterial thrombosis, treatment with extracorporeal membrane oxygenation, or mortality within 30 days. These results do not support the routine empirical use of intermediate-dose prophylactic anticoagulation in unselected patients admitted to the ICU with COVID-19. Trial Registration: ClinicalTrials.gov Identifier: NCT04486508. © 2021 American Medical Association. All rights reserved

    Azathioprine therapy induces selective NK cell depletion and IFN-γ deficiency predisposing to herpesvirus reactivation

    Full text link
    BACKGROUND: Azathioprine is a widely prescribed drug for patients with chronic inflammatory diseases such as myasthenia gravis or organ transplant recipients. Azathioprine exerts immunosuppressive effects by inhibiting intracellular purine synthesis and reducing the numbers of circulating B and T lymphocytes. Case reports indicate increased risk for serious infections that can occur despite regular measurements of lymphocyte counts during azathioprine therapy. OBJECTIVE: We sought to comprehensively investigate therapy-associated patient risks and the underlying immune dysfunction of azathioprine use. METHODS: Peripheral blood leukocytes were analyzed using single-cell mass and spectral flow cytometry to detect specific effects of azathioprine use on the systemic immune signature. Therapy-associated clinical features were analyzed in 2 independent cohorts of myasthenia gravis patients. RESULTS: Azathioprine therapy selectively induced pronounced CD56dim^{dim}CD16+^{+} natural killer cell depletion and concomitant IFN-γ deficiency. Cytokine profiling revealed a specific contraction of classical TH_{H}1 cells during azathioprine treatment. We further observed an increased occurrence of reactivation of endogenous latent herpesviruses in the azathioprine-treated group versus in patients with myasthenia gravis who were not receiving immunomodulatory treatment; this increased occurrence was validated in an independent cohort. CONCLUSION: Our study highlights the risk of development of adverse events during azathioprine therapy and suggests that natural killer cell monitoring could be valuable in clinical practice

    Digital Pulmonology Practice with Phonopulmography Leveraging Artificial Intelligence: Future Perspectives Using Dual Microwave Acoustic Sensing and Imaging

    No full text
    Respiratory disorders, being one of the leading causes of disability worldwide, account for constant evolution in management technologies, resulting in the incorporation of artificial intelligence (AI) in the recording and analysis of lung sounds to aid diagnosis in clinical pulmonology practice. Although lung sound auscultation is a common clinical practice, its use in diagnosis is limited due to its high variability and subjectivity. We review the origin of lung sounds, various auscultation and processing methods over the years and their clinical applications to understand the potential for a lung sound auscultation and analysis device. Respiratory sounds result from the intra-pulmonary collision of molecules contained in the air, leading to turbulent flow and subsequent sound production. These sounds have been recorded via an electronic stethoscope and analyzed using back-propagation neural networks, wavelet transform models, Gaussian mixture models and recently with machine learning and deep learning models with possible use in asthma, COVID-19, asbestosis and interstitial lung disease. The purpose of this review was to summarize lung sound physiology, recording technologies and diagnostics methods using AI for digital pulmonology practice. Future research and development in recording and analyzing respiratory sounds in real time could revolutionize clinical practice for both the patients and the healthcare personnel

    Pharmacological Agents Targeting Thromboinflammation in COVID-19: Review and Implications for Future Research

    No full text
    Coronavirus disease 2019 (COVID-19), currently a worldwide pandemic, is a viral illness caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The suspected contribution of thrombotic events to morbidity and mortality in COVID-19 patients has prompted a search for novel potential options for preventing COVID-19-associated thrombotic disease. In this article by the Global COVID-19 Thrombosis Collaborative Group, we describe novel dosing approaches for commonly used antithrombotic agents (especially heparin-based regimens) and the potential use of less widely used antithrombotic drugs in the absence of confirmed thrombosis. Although these therapies may have direct antithrombotic effects, other mechanisms of action, including anti-inflammatory or antiviral effects, have been postulated. Based on survey results from this group of authors, we suggest research priorities for specific agents and subgroups of patients with COVID-19. Further, we review other agents, including immunomodulators, that may have antithrombotic properties. It is our hope that the present document will encourage and stimulate future prospective studies and randomized trials to study the safety, efficacy, and optimal use of these agents for prevention or management of thrombosis in COVID-19

    Pharmacological Agents Targeting Thromboinflammation in COVID-19: Review and Implications for Future Research

    No full text
    Coronavirus disease 2019 (COVID-19), currently a worldwide pandemic, is a viral illness caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The suspected contribution of thrombotic events to morbidity and mortality in COVID-19 patients has prompted a search for novel potential options for preventing COVID-19-associated thrombotic disease. In this article by the Global COVID-19 Thrombosis Collaborative Group, we describe novel dosing approaches for commonly used antithrombotic agents (especially heparin-based regimens) and the potential use of less widely used antithrombotic drugs in the absence of confirmed thrombosis. Although these therapies may have direct antithrombotic effects, other mechanisms of action, including anti-inflammatory or antiviral effects, have been postulated. Based on survey results from this group of authors, we suggest research priorities for specific agents and subgroups of patients with COVID-19. Further, we review other agents, including immunomodulators, that may have antithrombotic properties. It is our hope that the present document will encourage and stimulate future prospective studies and randomized trials to study the safety, efficacy, and optimal use of these agents for prevention or management of thrombosis in COVID-19
    corecore