39 research outputs found

    Cell-type-specific profiling of protein-DNA interactions without cell isolation using targeted DamID with next-generation sequencing.

    Get PDF
    This protocol is an extension to: Nat. Protoc. 2, 1467-1478 (2007); doi:10.1038/nprot.2007.148; published online 7 June 2007The ability to profile transcription and chromatin binding in a cell-type-specific manner is a powerful aid to understanding cell-fate specification and cellular function in multicellular organisms. We recently developed targeted DamID (TaDa) to enable genome-wide, cell-type-specific profiling of DNA- and chromatin-binding proteins in vivo without cell isolation. As a protocol extension, this article describes substantial modifications to an existing protocol, and it offers additional applications. TaDa builds upon DamID, a technique for detecting genome-wide DNA-binding profiles of proteins, by coupling it with the GAL4 system in Drosophila to enable both temporal and spatial resolution. TaDa ensures that Dam-fusion proteins are expressed at very low levels, thus avoiding toxicity and potential artifacts from overexpression. The modifications to the core DamID technique presented here also increase the speed of sample processing and throughput, and adapt the method to next-generation sequencing technology. TaDa is robust, reproducible and highly sensitive. Compared with other methods for cell-type-specific profiling, the technique requires no cell-sorting, cross-linking or antisera, and binding profiles can be generated from as few as 10,000 total induced cells. By profiling the genome-wide binding of RNA polymerase II (Pol II), TaDa can also identify transcribed genes in a cell-type-specific manner. Here we describe a detailed protocol for carrying out TaDa experiments and preparing the material for next-generation sequencing. Although we developed TaDa in Drosophila, it should be easily adapted to other organisms with an inducible expression system. Once transgenic animals are obtained, the entire experimental procedure-from collecting tissue samples to generating sequencing libraries-can be accomplished within 5 d.This work was funded by a Wellcome Trust Senior Investigator Award (103792), Wellcome Trust Programme Grant (092545) and BBSRC Project Grant (BB/L00786X/1) to A.H.B. A.H.B acknowledges core funding to the Gurdon Institute from the Wellcome Trust (092096) and CRUK (C6946/A14492).This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nprot.2016.08

    Nanopore Sequencing Enables Comprehensive Transposable Element Epigenomic Profiling

    Get PDF
    Transposable elements (TEs) drive genome evolution and are a notable source of pathogenesis, including cancer. While CpG methylation regulates TE activity, the locus-specific methylation landscape of mobile human TEs has to date proven largely inaccessible. Here, we apply new computational tools and long-read nanopore sequencing to directly infer CpG methylation of novel and extant TE insertions in hippocampus, heart, and liver, as well as paired tumor and non-tumor liver. As opposed to an indiscriminate stochastic process, we find pronounced demethylation of young long interspersed element 1 (LINE-1) retrotransposons in cancer, often distinct to the adjacent genome and other TEs. SINE-VNTR-Alu\ua0(SVA) retrotransposons, including their internal tandem repeat-associated CpG island, are near-universally methylated. We encounter allele-specific TE methylation and demethylation of aberrantly expressed young LINE-1s in normal tissues. Finally, we recover the complete sequences of tumor-specific LINE-1 insertions and their retrotransposition hallmarks, demonstrating how long-read sequencing can simultaneously survey the epigenome and detect somatic TE mobilization

    LINE-1 Evasion of Epigenetic Repression in Humans

    Get PDF
    Epigenetic silencing defends against LINE-1 (L1) retrotransposition in mammalian cells. However, the mechanisms that repress young L1 families and how L1 escapes to cause somatic genome mosaicism in the brain remain unclear. Here we report that a conserved Yin Yang 1 (YY1) transcription factor binding site mediates L1 promoter DNA methylation in pluripotent and differentiated cells. By analyzing 24 hippocampal neurons with three distinct single-cell genomic approaches, we characterized and validated a somatic L1 insertion bearing a 3' transduction. The source (donor) L1 for this insertion was slightly 5' truncated, lacked the YY1 binding site, and was highly mobile when tested in\ua0vitro. Locus-specific bisulfite sequencing revealed that the donor L1 and other young L1s with mutated YY1 binding sites were hypomethylated in embryonic stem cells, during neurodifferentiation, and in liver and brain tissue. These results explain how L1 can evade repression and retrotranspose in the human body

    RNA-DamID reveals cell-type-specific binding of roX RNAs at chromatin-entry sites.

    No full text
    Thousands of long noncoding RNAs (lncRNAs) have been identified in eukaryotic genomes, many of which are expressed in spatially and temporally restricted patterns. Nonetheless, the roles of the majority of these transcripts are still unknown. One of the mechanisms by which lncRNAs function is through the modulation of chromatin states. To assess the functions of lncRNAs, we developed RNA-DamID, a novel approach that detects lncRNA-genome interactions in a cell-type-specific manner in vivo with high sensitivity and accuracy. Identifying the cell-type-specific genome occupancy of lncRNAs is vital to understanding their mechanisms of action in development and disease. We used RNA-DamID to investigate targeting of the lncRNAs in the Drosophila dosage-compensation complex (DCC) and show that initial targeting is cell-type specific

    RNA-DamID reveals cell-type-specific binding of roX RNAs at chromatin-entry sites

    No full text
    Thousands of long noncoding RNAs (lncRNAs) have been identified in eukaryotic genomes, many of which are expressed in spatially and temporally restricted patterns. Nonetheless, the roles of the majority of these transcripts are still unknown. One of the mechanisms by which lncRNAs function is through the modulation of chromatin states. To assess the functions of lncRNAs, we developed RNA-DamID, a novel approach that detects lncRNA-genome interactions in a cell-type-specific manner in vivo with high sensitivity and accuracy. Identifying the cell-type-specific genome occupancy of lncRNAs is vital to understanding their mechanisms of action in development and disease. We used RNA-DamID to investigate targeting of the lncRNAs in the Drosophila dosage-compensation complex (DCC) and show that initial targeting is cell-type specific

    Insulin finds its niche

    No full text
    Localized insulin signaling allows organ-specific rather than organism-level responses to the environmental conditions.</jats:p

    Methylartist: Tools for Visualising Modified Bases from Nanopore Sequence Data

    Full text link
    AbstractMethylartist is a consolidated suite of tools for processing, visualising, and analysing nanopore methylation data derived from modified basecalling methods. All detectable methylation types (e.g. 5mCpG, 5hmC, 6mA) are supported, enabling integrated study of base pairs when modified naturally or as part of an experimental protocol.BackgroundCovalent modification of nucleobases is an important component of genomic regulatory regimes across all domains of life [1–3] and is harnessed by various genomic footprinting assays, including DamID[4], SMAC-seq[5], and NOMe-seq[6]. Nanopore sequencing offers comprehensive assessment of base modifications from arbitrarily long sequence reads through analysis of electrical current profiles, generally through machine learning models trained to discriminate between modified and unmodified bases [7]. An increasing number of computational tools have been developed or enhanced for calling modified bases [8], including nanopolish [7], megalodon [9], and guppy [10], along with an increasing number of available pre-trained models.</jats:sec

    Freedom of expression: cell-type-specific gene profiling

    No full text
    Cell fate and behavior are results of differential gene regulation, making techniques to profile gene expression in specific cell types highly desirable. Many methods now enable investigation at the DNA, RNA and protein level. This review introduces the most recent and popular techniques, and discusses key issues influencing the choice between these such as ease, cost and applicability of information gained. Interdisciplinary collaborations will no doubt contribute further advances, including not just in single cell type but single-cell expression profiling
    corecore