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SUMMARY 28 

Epigenetic silencing defends against LINE-1 (L1) retrotransposition in mammalian cells. 29 

However, the mechanisms that repress young L1 families, and how L1 escapes to cause somatic 30 

genome mosaicism in the brain, remain unclear. Here we report that a conserved Yin Yang 1 (YY1) 31 

transcription factor binding site mediates L1 promoter DNA methylation in pluripotent and 32 

differentiated cells. By analyzing 24 hippocampal neurons with three distinct single-cell genomic 33 

approaches, we characterized and validated a somatic L1 insertion bearing a 3ʹ transduction. The 34 

source (donor) L1 for this insertion was slightly 5ʹ truncated, lacked the YY1 binding site, and was 35 

highly mobile when tested in vitro. Locus-specific bisulfite sequencing revealed the donor L1, and 36 

other young L1s with mutated YY1 binding sites, were hypomethylated in embryonic stem cells, 37 

during neurodifferentiation, and in liver and brain tissue. These results explain how L1 can evade 38 

repression and retrotranspose in the human body. 39 

 40 

HIGHLIGHTS 41 

• Single-cell genomic analysis of hippocampal neurons revealed a somatic L1 insertion. 42 

• The donor L1 was slightly 5ʹ truncated and lacked a conserved YY1 binding site. 43 

• Young L1s with truncated or mutated YY1 binding sites are hypomethylated. 44 

• L1 is able to mobilize in the brain due to locus-specific exceptions to repression. 45 

 46 

INTRODUCTION 47 

Retrotransposons are mobile genetic elements that must evade host genome defenses to replicate 48 

and survive (Kazazian and Moran, 2017). Long interspersed element 1 (LINE-1, or L1) is the only 49 

extant autonomous human retrotransposon (Mills et al., 2007). A full-length L1 mRNA is ~6kb 50 

long, polyadenylated, and encodes two proteins (ORF1p and ORF2p) that catalyze 51 

retrotransposition via target-primed reverse transcription (TPRT) (Feng et al., 1996; Luan et al., 52 

1993; Moran et al., 1996) (Figure 1A). Nearly all L1 copies are immobile due to 5ʹ truncation and 53 

ORF-disabling mutations. Of 500,000 reference genome L1s, only ~100 are full-length with intact 54 

ORFs, and fewer than 10 per individual hold significant retrotransposition potential (Beck et al., 55 

2010; Brouha et al., 2003). These “hot” donor (source) L1s are almost all members of the L1-Ta 56 

family and together generate one new germline insertion per ~150 births (Brouha et al., 2003; 57 

Ewing and Kazazian, 2010). Heritable L1 insertions arise in the early embryo or germline, and can 58 
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cause sporadic genetic disease (Richardson et al., 2017; van den Hurk et al., 2007). Somatic L1 59 

retrotransposition has been observed in the neuronal lineage (Baillie et al., 2011; Coufal et al., 60 

2009; Erwin et al., 2016; Evrony et al., 2012; Evrony et al., 2015; Macia et al., 2017; Muotri et al., 61 

2005; Upton et al., 2015) and in tumor cells (Evrony et al., 2012; Ewing et al., 2015; Iskow et al., 62 

2010; Nguyen et al., 2018; Scott et al., 2016; Tubio et al., 2014) but is of unresolved biological 63 

significance (Burns, 2017; Faulkner and Garcia-Perez, 2017; Scott and Devine, 2017). 64 

Epigenetic and transcriptional silencing guard against L1-mediated mutagenesis (Castro-65 

Diaz et al., 2014; de la Rica et al., 2016; Muotri et al., 2010; Walter et al., 2016), causing L1 to 66 

engage in an evolutionary arms race with repressive host factors (Goodier, 2016; Jacobs et al., 67 

2014). The L1 5ʹUTR is pivotal in this conflict. Its initial 100nt contains an internal promoter 68 

driving L1 mRNA transcription initiation (Swergold, 1990). DNA methylation of an adjacent CpG 69 

island regulates this promoter (Hata and Sakaki, 1997; Muotri et al., 2010), as do various 70 

transcription factors, including YY1, RUNX3 and SOX2 (Athanikar et al., 2004; Coufal et al., 71 

2009; Yang et al., 2003). L1 methylation is established during embryogenesis (Castro-Diaz et al., 72 

2014; de la Rica et al., 2016) and is strongly maintained in somatic tissues (Coufal et al., 2009; 73 

Macia et al., 2017; Schauer et al., 2018; Shukla et al., 2013). Given this repression, it is unclear 74 

how L1 achieves retrotransposition in the neuronal lineage.  75 

Here we find that a highly conserved YY1 binding site mediates L1 promoter DNA 76 

methylation. Exceptions to this repression during neurodifferentiation and in mature tissues appear 77 

to govern which L1s mobilize in the brain. Our results suggest the YY1 binding site has guarded 78 

against L1 retrotransposition over at least the last 70 million years of human evolution. 79 

 80 

RESULTS 81 

An integrated single-cell genomic analysis of human hippocampal neurons 82 

To identify somatic L1 insertions, we isolated 24 single NeuN+ neuronal nuclei from the post-83 

mortem hippocampus of an individual (female, 18yrs) without evidence of neurological disease 84 

(CTRL-36). For each nucleus, we then performed whole genome amplification (WGA) via 85 

multiple displacement amplification (MDA), followed by ~47× Illumina whole genome 86 

sequencing (WGS), retrotransposon capture sequencing (RC-seq) and L1 insertion profiling (L1-87 

IP) (Table S1). RC-seq employs sequence capture to enrich Illumina libraries for reads spanning 88 

L1-Ta 5′ and 3′ genomic junctions, while L1-IP uses PCR to amplify the 3′ genomic flank of L1-89 
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Ta copies prior to Illumina library preparation (Evrony et al., 2012; Ewing and Kazazian, 2010; 90 

Upton et al., 2015). Bulk hippocampus and liver genomic DNA from CTRL-36 were analyzed 91 

with 94× and 49× WGS, respectively, as well as with RC-seq and L1-IP. Candidate L1 insertions 92 

robustly identified by WGS, RC-seq and L1-IP in at least one neuron, but absent from liver, were 93 

annotated as somatic events (Figure 1B). Following these requirements, we detected one somatic 94 

L1 insertion, on chromosome 3 in neuron-#15 (Figure 1C, Table S2). Capillary sequencing of the 95 

entire integration site revealed a 5.4Kb L1-Ta insertion, with a 5ʹ inversion/deletion (Ostertag and 96 

Kazazian, 2001), and carrying a 24nt 3ʹ transduction (Goodier et al., 2000; Moran et al., 1999; 97 

Pickeral et al., 2000) followed by a >140nt pure polyA tract (Figure 1D). The insertion presented 98 

a degenerate L1 endonuclease cleavage site (5ʹ-CTTT/CC) and yielded a 20nt target site 99 

duplication (TSD). These features were consistent with TPRT-mediated L1 retrotransposition 100 

(Jurka, 1997; Luan et al., 1993). 101 

We next attempted to PCR amplify and capillary sequence the entire somatic L1 insertion 102 

(empty/filled site reaction), its 5ʹ L1-genome junction, and its 3ʹ transduction-genome junction 103 

(Figure S1A) in an extended panel of CTRL-36 hippocampal neurons. In the 24 MDA-amplified 104 

neurons subjected to genomic analysis, the filled site was only detected in neuron-#15, while the 105 

3ʹ junction was detected in 4 additional neurons (Figure S1B-D). In an additional 24 MDA-106 

amplified neurons, the 5ʹ and 3ʹ junctions were each found only in neuron-#36 (Figure S1B-D). In 107 

a third set of 24 neurons, amplified via the MALBAC protocol (Zong et al., 2012), either the 5ʹ or 108 

3ʹ junction was found in 5 neurons (Figure S1E). The L1 insertion polyA tract length varied among 109 

the neurons where it was detected, and followed a bimodal distribution, clustering around ~130nt 110 

and ~65nt (Figure S1C, E and F), corroborating reports of L1 polyA tract shortening during cell 111 

division (Evrony et al., 2015; Grandi et al., 2013; Richardson et al., 2017). The somatic L1 112 

insertion was therefore present in many CTRL-36 hippocampal neurons and likely arose in a 113 

neuronal progenitor cell. 114 

To assess the sensitivity of our single-cell genomic analysis, we capillary sequenced the 3ʹ 115 

junction of 42 heterozygous germline L1s carried by CTRL-36 (Figure S1G,J, Table S2). We 116 

observed a paucity of long, pure polyA tracts (Figure S1H) that usually accompany new L1 117 

insertions (Evrony et al., 2015; Richardson et al., 2017; Scott et al., 2016). On average, 71.8% and 118 

22.2% of the heterozygous L1s were detected by WGS applied to bulk liver and each single neuron, 119 

respectively (Figure S1I), at the detection thresholds we applied to call somatic L1 insertions (≥8 120 
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reads at each 5ʹ and 3ʹ L1-genome junction). Those heterozygous L1s with pure polyA tracts were 121 

only detected by single-cell WGS with an average sensitivity of 15.3%, a rate significantly lower 122 

than for the remaining heterozygous L1s (24.1%) (P<0.0055, Fisher’s exact test). Single-cell WGA 123 

and, to a lesser extent, pure polyA tracts, could influence detection sensitivity for somatic L1 124 

insertions. As well, while the 3ʹ junction of the heterozygous L1 with the longest (90nt) polyA 125 

tract could be PCR amplified in ~80% of the expanded panel of 48 MDA-amplified neurons 126 

(Figure S1J), the filled site was detected in only ~33% of the MDA-amplified neurons (Figure 127 

S1K). The false negative rate of detection and PCR validation at this standard of evidence may 128 

therefore be relatively high. Overall, the somatic L1 insertion was detected and empty/filled site 129 

PCR validated in neuron-#15, but was likely present in ~25% of the hippocampal neurons analyzed 130 

with our integrated single-cell genomic approach. 131 

 132 

A somatically-active hot donor L1 133 

We traced the somatic L1 insertion 3ʹ transduction to an intergenic L1-Ta located on chromosome 134 

13 and 5ʹ truncated by 31nt (Figure 1D). Strikingly, this donor L1 (named here Chr13∆31L1) gave 135 

rise to a somatic L1 insertion found in the cortex of another individual (Evrony et al., 2015) and 136 

was inactive when previously tested for retrotransposition in vitro (Brouha et al., 2003). Among 137 

CTRL-36 and 7 other unrelated people, we characterized three allelic variants (numbered 1-3) of 138 

Chr13∆31L1 (Figures 2A and S2A). Chr13∆31L1 was present in 7/8 individuals (Figure 2A). 139 

CTRL-36 was heterozygous for Chr13∆31L1, and carried only allele 1. Allele 1 encoded intact 140 

ORF1 and ORF2 sequences, whereas alleles 2 and 3 respectively carried stop codon 141 

(C5164T/Q1059Ø) and missense (A2036G/N16S) mutations likely to disable ORF2p activity 142 

(Moran et al., 1996; Weichenrieder et al., 2004). 143 

To test the retrotransposition efficiency of each Chr13∆31L1 allele, we employed two L1 144 

reporter assays based on the activation of an antibiotic resistance or fluorescence cassette upon 145 

retrotransposition, with L1 transcription driven by its native promoter or a cytomegalovirus 146 

promoter (CMVp) (Moran et al., 1996; Ostertag et al., 2000). In these assays, Chr13∆31L1 alleles 147 

2 and 3 were totally or nearly immobile, while allele 1 retrotransposed at ~40% and ~20% of a hot 148 

L1 (L1.3) positive control (Sassaman et al., 1997) in HeLa and HEK239T cells, respectively 149 

(Figures 2B and S2B). Restoration of the 31nt 5ʹ truncated sequence to allele 1 elevated its activity 150 

above that of L1.3, as did the presence of CMVp (Figure 2B). We then tested each Chr13∆31L1 151 
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allele in PA-1 embryonic carcinoma cells, which silence newly mobilized L1 reporter cassettes 152 

unless treated with trichostatin A (Garcia-Perez et al., 2010). Allele 1 was not active in PA-1 cells 153 

unless the 31nt truncated sequence was restored (Figure 2C). Consistently, a luciferase promoter 154 

reporter assay indicated all three Chr13∆31L1 alleles were transcriptionally active in HeLa and 155 

HEK293T cells, and not in PA-1 cells (Figures 2D and S2C). The endogenous Chr13∆31L1 156 

promoter was thus active in some cell types despite its 5ʹ truncation, providing potential for the 157 

retrotransposition competent allele 1 to mobilize in vivo. 158 

 159 

Slightly 5ʹ truncated L1s evade DNA methylation 160 

We hypothesized that incomplete epigenetic repression enabled Chr13∆31L1 somatic 161 

retrotransposition. We therefore developed a PCR-free bisulfite sequencing strategy to measure 162 

L1 locus-specific DNA methylation, as well as L1-Ta family methylation genome-wide (Figure 163 

3A). Paired-end 300mer Illumina sequencing allowed higher throughput and wider resolution of 164 

the L1 5′UTR CpG island compared to prior approaches (Coufal et al., 2009; Klawitter et al., 2016; 165 

Scott et al., 2016; Tubio et al., 2014; Wissing et al., 2012). We found 90.0% and 78.2% L1-Ta 166 

family methylation in CTRL-36 hippocampus and liver, respectively (Figure 3B). By contrast, the 167 

Chr13∆31L1 promoter was 39.3% and 19.5% methylated in hippocampus and liver, respectively, 168 

with numerous fully demethylated sequences in each tissue (Figure 3B). The only two other 169 

CTRL-36 germline L1-Ta copies (Chr5∆31L1 and Chr6∆31L1) 5ʹ truncated by 31nt were almost 170 

entirely demethylated (Chr5∆31L1) or fully demethylated in 5-10% of cells (Chr6∆31L1) (Figures 171 

3B and S3E, Table S2). However, two heterozygous, intergenic full-length germline L1-Ta 172 

insertions (Chr6FLL1 and Chr2∆2L1) were almost completely methylated (Figures 3B and S3E). 173 

We also observed this contrasting pattern in hippocampus, liver and, where available, cortex tissue 174 

obtained from the remainder of our cohort (Figure S3A-J). Chr13∆31L1 was strongly (P<0.0001, 175 

one-way ANOVA with Tukey’s multiple comparison test) demethylated compared to the L1-Ta 176 

family in all 7 carrier individuals (Figures 3C and S3B,E). These results suggested 5′ truncated 177 

L1s were hypomethylated in mature human tissues. 178 

Embryonic development witnesses dramatic increases in genome-wide L1 DNA methylation 179 

(Castro-Diaz et al., 2014; Coufal et al., 2009; de la Rica et al., 2016; Macia et al., 2017; Walter et 180 

al., 2016). To assess Chr13∆31L1 methylation during neurodevelopment in vitro, we conducted L1 181 

bisulfite sequencing on pluripotent H1 human embryonic stem cells (hESCs), as well as H1-182 
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derived neuronal progenitor cells (NPCs) and neurons. Genotyping via 43× WGS (Table S1) 183 

revealed that Chr13∆31L1, Chr6FLL1, Chr2∆2L1 and Chr6∆31L1 were heterozygous in H1 cells, 184 

whereas Chr5∆31L1 was absent (Table S2). Overall, the L1-Ta family was 72.1% methylated in 185 

hESCs, and more strongly methylated in neurons (82.6%), as expected (Coufal et al., 2009; Macia 186 

et al., 2017) (Figures 3B,D and S3K). The full-length elements Chr6FLL1 and Chr2∆2L1 were 187 

~90% methylated in hESCs and during neurodifferentiation (Figure 3B). By contrast, the 5′ 188 

truncated elements Chr13∆31L1 and Chr6∆31L1 were 1.7% and 14.9% methylated, respectively, in 189 

hESCs and only partially remethylated (~60%) in neuronal cells (Figure 3B). Both DNA strands 190 

of the Chr13∆31L1 promoter remained fully unmethylated in ~5% of neurons (Figures 3B and 191 

S3L). Next, we identified a single nucleotide polymorphism (rs9508517) only present in the 5ʹ 192 

genomic flank of each Chr13∆31L1 allele. Bisulfite sequencing of this flank, and regions further 193 

upstream, indicated it was highly methylated in NPCs, neurons and brain tissue, regardless of 194 

whether Chr13∆31L1 was present (Figures 3B and S3C,D,M). In hESCs, moderate demethylation 195 

of the flanking region extended up to 500bp away from Chr13∆31L1, when the L1 was present, 196 

and formed a methylation “sloping shore” (Figures 3B and S3M) previously observed adjacent to 197 

retrotransposed CpG islands (Grandi et al., 2015). Overall, these data depicted an element-specific 198 

failure to repress Chr13∆31L1 in mature tissues and during neurodevelopment. 199 

 200 

A YY1 binding site enables L1 locus-specific promoter methylation 201 

Provided the distinct but consistent DNA methylation patterns observed for full-length and 31nt 202 

5′ truncated L1s, we investigated the degree of 5ʹ truncation required for L1 hypomethylation. We 203 

assembled a panel of 28 germline L1-Ta insertions that were full-length or 5ʹ truncated up to 31nt, 204 

and present in CTRL-36 or the H1 genome (Table S2). We then performed L1 bisulfite sequencing 205 

using genomic DNA from CTRL-36 liver and the H1 neurodifferentiation time course. At least 206 

~60%, but generally more than 80%, methylation was observed for the L1s that were full-length 207 

or truncated by <14nt (Figures 4A,B and S4A,B). Among this group, three highly active full-length 208 

L1s, Chr22FLL1-L1.2, ChrXFLL1 and Chr22FLL1-TTC28, tended to be the least methylated, 209 

consistent with prior results (Philippe et al., 2016; Tubio et al., 2014; Wissing et al., 2012). 210 

Conversely, of the L1s truncated by ≥14nt, all apart from Chr6∆31L1 were <20% methylated in 211 

liver tissue (Figure 4A) and all except Chr1∆21L1-LRE2 were <15% methylated in hESCs (Figure 212 

4B). Almost every fully or near-fully unmethylated sequence was found in elements truncated by 213 
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≥14nt (Figure 4A,B), and even Chr1∆21L1-LRE2 was fully unmethylated in some hESCs, in line 214 

with its capacity to mobilize in the germline (Holmes et al., 1994). Further examination revealed 215 

frequent non-canonical CpH (H=A/C/T) methylation in hESCs at L1-Ta position +44 (Figures 4C 216 

and S4C) in sequences exhibiting high CpG methylation, consistent with de novo DNA 217 

methyltransferase activity (Gowher and Jeltsch, 2001; Liao et al., 2015). A 5′ truncation of ≥14nt 218 

thus demarcated methylated and hypomethylated L1s. 219 

YY1 is a zinc finger protein (ZFP) that has been shown biochemically to bind L1-Ta 220 

positions +12 to +20 and direct transcription initiation to position +1 (Athanikar et al., 2004; 221 

Becker et al., 1993). L1s truncated by ≥14nt therefore lacked at least three nucleotides of this YY1 222 

binding site (Figure 4B), which is conserved in almost all primate L1 lineages found in the human 223 

genome (Table S3) (Khan et al., 2006). To assess the potential impact of YY1 site sequence 224 

variation, we used L1 bisulfite sequencing to analyze methylation of full-length L1-Ta and L1PA2 225 

elements, the latter family becoming only recently immobile in humans (Mills et al., 2007), that 226 

carried point mutations in their YY1 motif. Likely due to YY1 site conservation, few such 227 

examples were available. However, an L1PA2 copy on chromosome 17 that harbored two YY1 228 

site mutations was found to be far less methylated in hESCs and during neurodifferentiation than 229 

the L1PA2 family overall (Figures 4D and S4D). We also found fully unmethylated promoter 230 

sequences for two L1PA2 and L1-Ta elements, located respectively on chromosomes 5 and 1, 231 

carrying single YY1 site mutations (Figure S4D). These examples, alongside our other results, 232 

suggested YY1 binding site perturbation via either point mutation or 5′ truncation coincided with 233 

L1 hypomethylation.   234 

 235 

Genome-wide young L1 repression mediated by YY1 236 

Distinct regulatory programs may repress newly emerged and older L1 families. For example, 237 

KAP1 (TRIM28) binds L1 in hESCs (Figure 5A) and particularly limits expression of the older 238 

primate-specific families L1PA3-L1PA6 (Castro-Diaz et al., 2014; Jacobs et al., 2014). YY1 239 

binding, by contrast, is pronounced at the 5′ end of the young L1-Ta and L1PA2 families (Figure 240 

5A) (Sun et al., 2018), despite conservation of the YY1 motif in older L1 families (Table S3), and 241 

is strongly anticorrelated with KAP1 binding (r=-0.93, Pearson). As expected, we found L1-Ta 242 

and L1PA2 elements 5′ truncated by ≥14nt were far less bound by YY1 in hESCs than full-length 243 

L1s, whereas no difference in KAP1 binding was observed (Figure 5A). Full-length L1s carrying 244 
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YY1 motif point mutations were also less likely to bind YY1 than elements with an intact binding 245 

site (Figure 5A). We then analyzed published data obtained from HEK293 cells engineered to 246 

express GFP-tagged YY1 protein (Schmitges et al., 2016) and again we found YY1 was heavily 247 

bound to L1-Ta and L1PA2 elements (Figure S5A). Consistently, YY1 overexpression in HEK293 248 

cells significantly (P<0.05, two-tailed t-test) reduced transcription from only these young L1 249 

families (Figure S5A). These results suggested, if YY1 mediated L1 promoter methylation, loss 250 

of its binding site would principally impact young L1 families. 251 

To test this possibility genome-wide, we performed ~33× whole-genome bisulfite 252 

sequencing (WGBS) on neuronal nuclei isolated from CTRL-36 hippocampal tissue. This analysis 253 

encompassed only the initial 300nt of germline L1s found in the reference genome, where 254 

methylation was typically higher than further 3′ in individual L1 promoters (Figure 3B), and 255 

offered lower resolution than our locus-specific approach. Nonetheless, we determined that full-256 

length members of each L1 family were >90% methylated (Figure 5B), in agreement with prior 257 

results (de la Rica et al., 2016). By contrast, L1-Ta and L1PA2 elements truncated by ≥14nt were 258 

significantly less methylated than full-length L1s from the same families (P<0.001, one-way 259 

ANOVA with Dunn’s multiple comparison test), while older truncated L1s were not 260 

hypomethylated (Figure 5B). Repeating this analysis using published H1 hESC WGBS data 261 

(ENCODE Project Consortium, 2012), we again observed widespread methylation of full-length 262 

L1s and significant hypomethylation (P<0.001) of only ≥14nt truncated L1-Ta and L1PA2 263 

sequences (Figure 5B). As bisulfite sequencing cannot distinguish methylcytosine and 264 

hydroxymethylcytosine (hmC), we also analyzed published genome-wide hmC data from H1 cells 265 

obtained via Tet-assisted bisulfite sequencing (TAB-seq) (Yu et al., 2012). As reported elsewhere 266 

(de la Rica et al., 2016), hmC was low (less than ~10%) among each L1 family. The level of hmC 267 

was not significantly different among ≥14nt truncated and full-length L1-Ta copies (Figure 5C), 268 

and did not exceed 25% for any individual L1-Ta promoter. Overall, DNA hypomethylation of 269 

young L1s with mutant YY1 sites was detected by locus-specific and genome-wide analyses, and 270 

primarily reflected reduced methylcytosine levels. 271 

 272 

Chr13∆31L1 transcription during neurodifferentiation 273 

Promoter hypomethylation alone does not demonstrate transcription, and mRNAs transcribed by 274 

members of a young L1 family, such as L1-Ta, are difficult to link to a specific L1 copy. However, 275 
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an antisense promoter (ASP) located at +600 to +400 in the L1 5ʹUTR can generate chimeric L1 276 

transcripts incorporating unique upstream sequences (Denli et al., 2015; Faulkner et al., 2009; 277 

Speek, 2001). L1 ASP activity may therefore serve as a proxy for transcription from the canonical 278 

L1 sense promoter (Macia et al., 2011). To assess Chr13∆31L1 ASP activity, we designed primers 279 

to target an annotated RNA (NR_135320) antisense to Chr13∆31L1, as well as RNAs initiated from 280 

the Chr13∆31L1 ASP and spliced into exons more than 30kb away (Figure S5B). Using RT-PCR 281 

and RNA extracted from differentiating PA-1 cells, we identified various transcripts initiated by 282 

the Chr13∆31L1 ASP (Figure S5B,C). We then targeted a commonly-used splice junction and 283 

detected Chr13∆31L1 antisense transcripts expressed in hippocampus or liver tissue from each 284 

Chr13∆31L1 carrier in our cohort (Figure S5D). TaqMan RT-qPCR indicated Chr13∆31L1 285 

antisense transcript abundance and DNA methylation were inversely correlated during hESC 286 

neurodifferentiation in vitro, including a ~10-fold reduction in expression upon differentiation to 287 

NPCs (Figures 5D and S5E). These experiments demonstrated Chr13∆31L1 expression coincident 288 

hypomethylation of its promoter in mature tissues, in hESCs, and during neurodifferentiation in 289 

vitro. 290 

 291 

Locus-specific mechanisms of L1 repression and escape 292 

Our analyses suggested a YY1 binding site was generally required for L1-Ta promoter methylation 293 

in vivo. However, we observed locus-specific exceptions to this pattern. First, a near full-length 294 

L1-Ta (Chr8∆3L1) located intronic to the KCBN2 gene was earlier identified as the source of a 295 

cortical neuron somatic L1 insertion that carried a 101nt 5ʹ transduction (Evrony et al., 2012; 296 

Evrony et al., 2015). In our cohort, Chr8∆3L1 was present only in CTRL-28 and CTRL-42, and as 297 

a heterozygous polymorphism in each individual. Locus-specific L1 bisulfite sequencing indicated 298 

Chr8∆3L1 was almost completely methylated in brain and liver tissues (Figures 6A and S6A), 299 

consistent with its intact YY1 binding site. KCNB2 is specifically expressed in the brain (Figure 300 

S6B) and was detected here by RNA sequencing (RNA-seq) applied to hippocampal tissue (Figure 301 

S6C). Bisulfite analysis indicated the region upstream of Chr8∆3L1 was heavily demethylated in 302 

brain tissue, but not liver (Figures 6A and S6D). A transcript (DA461809) spliced shortly upstream 303 

of the Chr8∆3L1 5ʹ end is likely initiated from an annotated promoter (Forrest et al., 2014) in the 304 

demethylated flanking region. Crucially, the DA461809 splice junction was used to generate the 305 

template RNA for the 5ʹ transduction carried by the cortical L1 insertion traced to Chr8∆3L1 306 
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(Figure 6A). We therefore propose the genomic location of Chr8∆3L1, in a gene expressed in brain 307 

and downstream of a strong promoter element, enabled transcription and retrotransposition of a 308 

chimeric DA461809-Chr8∆3L1 mRNA, despite methylation of the Chr8∆3L1 promoter. 309 

Another element, Chr22FLL1-TTC28, is a fixed germline L1-Ta (Gardner et al., 2017) 310 

located antisense to the first intron of TTC28, which is highly expressed in many tissues (Figure 311 

S6E). In our cohort, Chr22FLL1-TTC28 was methylated in brain tissues but, despite its intact YY1 312 

binding site, was fully demethylated in a subset of hepatic cells (Figures 6B and S6F). 313 

Reciprocally, locus-specific repression may influence young L1s lacking a YY1 binding site. For 314 

example, Chr1∆21L1-LRE2 was abnormally methylated in hESCs and neuronal cells, compared to 315 

the remaining 5ʹ truncated L1s (Figures 4B and S4B). An L1PA13 element was located ~2.7kb 316 

upstream of Chr1∆21L1-LRE2, and incorporated a YY1 binding site (Figure 6C). Methylation of 317 

this L1PA13 was complete in hESCs and maintained throughout neurodifferentiation (Figure 6C). 318 

We speculate that methylation spreading from the L1PA13 may explain the unusual repression of 319 

Chr1∆21L1-LRE2 (Figure 4B and S4B). Together, Chr8∆3L1, Chr22FLL1-TTC28 and Chr1∆21L1-320 

LRE2 highlight how YY1-mediated repression may be supplanted occasionally by locus-specific 321 

regulatory mechanisms. 322 

 323 

DISCUSSION 324 

Our experiments indicate a highly conserved YY1 binding site is central to L1 repression in 325 

pluripotent and differentiated human cells. It is possible that YY1 recruits DNA methyltransferases 326 

directly to silence members of the L1-Ta and L1PA2 families (Castro-Diaz et al., 2014; Hervouet 327 

et al., 2009; Schlesinger et al., 2013). Genome-wide analyses suggest YY1 and KAP1 bind distinct 328 

L1 families (Castro-Diaz et al., 2014; Sun et al., 2018). KAP1 silences older L1s and other 329 

transposable elements by recruiting histone-modifying factors (Castro-Diaz et al., 2014; Ecco et 330 

al., 2016; Imbeault et al., 2017; Rowe et al., 2010; Turelli et al., 2014; Wolf et al., 2015; Yang et 331 

al., 2017). KAP1 knockdown in hESCs does not significantly alter L1-Ta or L1PA2 expression, 332 

whereas knockdown of DNA methyltransferases increases expression of these young L1s (Castro-333 

Diaz et al., 2014). A general lack of KAP1-associated deposition of repressive H3K9me3 upon 334 

young L1 families (Castro-Diaz et al., 2014), may explain why YY1 can only access its binding 335 

site and mediate DNA methylation of young L1s. Alternative inhibitory pathways (e.g. piRNAs) 336 

may also target the YY1 motif (Aravin et al., 2008; Castro-Diaz et al., 2014; Marchetto et al., 337 
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2013). These scenarios are not exclusive, and each involve YY1-dependent DNA methylation.  338 

YY1 facilitates full-length L1 transcription, and nearly all L1 families active over the last 70 339 

million years of human evolution present a YY1 binding site at their 5′ end (Athanikar et al., 2004; 340 

Khan et al., 2006). As an activator and repressor, YY1 (Yin Yang 1) is an enduring modulator of 341 

L1 activity. In turn, L1 is engaged in an evolutionary arms race with host genome defenses. Almost 342 

all human L1s have lost this conflict, are immobile, and are controlled by KAP1 and other factors 343 

(Imbeault et al., 2017; Jacobs et al., 2014; Liu et al., 2018; Robbez-Masson et al., 2018). Sequence 344 

divergence is likely pivotal in L1 eluding complete repression. For example, loss of a 5′UTR 345 

binding site for the repressor ZNF93 ~12.5 million years ago enabled L1PA3 and younger L1 346 

families to escape from ZNF93 restriction at the cost of a weakened promoter (Jacobs et al., 2014). 347 

It is striking then that absence of the YY1 site from Chr13∆31L1 reduces but does not abolish its 348 

promoter activity. Numerous L1s lacking the YY1 site may have escaped repression and 349 

retrotransposed, as achieved by L1PA3 millions of years ago, and yet failed to spread further in 350 

the germline without the YY1 site to provide their progeny with a functional 5′ sense promoter. 351 

Given enrichment of YY1 bound to young L1 families, despite conservation of the YY1 binding 352 

site among much older L1s, we speculate that YY1 has sequentially repressed each new mobile 353 

L1 family that has emerged during human evolution, with control passing to KAP1 or other factors 354 

as these new L1 families grow older and less likely to mobilize.  355 

Numerous retrotransposition-competent L1s without an intact YY1 binding site could exist 356 

in the global population. That Chr13∆31L1 allele 1 was found in 3/8 members of our cohort, as 357 

well as another individual where it generated a cortical neuron L1 insertion (Evrony et al., 2015), 358 

suggests many people carry this hot L1 allele, and that it is recurrently mobile in the neuronal 359 

lineage. Another element lacking a YY1 binding site due to 5ʹ truncation, Chr1∆21L1-LRE2, was 360 

discovered as the source of a pathogenic 3ʹ transduction-carrying L1 insertion (Holmes et al., 361 

1994), and is mobile in the germline and tumors (Gardner et al., 2017; Tubio et al., 2014). It is 362 

likely that further retrotransposition of Chr13∆31L1, Chr1∆21L1-LRE2 and other slightly 5′ 363 

truncated L1s will be reported in the future. Full-length L1s with intact YY1 binding sites may 364 

also escape repression, by exception, due to their genomic location. For example, the heavily 365 

methylated element Chr8∆3L1 mobilized in brain (Evrony et al., 2012) with the assistance of an 366 

upstream promoter. Another full-length element, Chr22FLL1-TTC28 is highly mobile and 367 

hypomethylated in tumors (Nguyen et al., 2018; Schauer et al., 2018; Tubio et al., 2014). As we 368 
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found here, Chr22FLL1-TTC28 was also unmethylated in many hepatic cells, perhaps due to its 369 

location intronic to a highly expressed gene. It is plausible that full-length and 5′ truncated donor 370 

L1s employ context-specific routes to evade YY1-mediated methylation and retrotranspose in both 371 

neural and non-neural somatic cells (Doucet-O'Hare et al., 2016; Shukla et al., 2013), generating 372 

L1 mosaicism beyond the brain. 373 

Including this study, three somatic L1 insertions have been identified in neurons by single-374 

cell WGS and PCR amplified across their entire length (Evrony et al., 2015). Each carried a 5ʹ or 375 

3ʹ transduction, which otherwise flank a minority of de novo L1 insertions. It is unclear whether 376 

WGA favors recovery of these events. That all three somatic L1 insertions were present in multiple 377 

neurons suggests they arose in a neuronal lineage progenitor cell. However, owing to the false 378 

negative rate of the approach and ascertainment bias, we cannot resolve the predominant 379 

neurogenic timing of L1 mobilization. Somatic L1 insertions arising during embryogenesis have 380 

however been detected in mouse brain, without genomic analysis requiring WGA, suggesting early 381 

neurodevelopment is a source of neuronal L1 mosaicism in mammals (Richardson et al., 2017). 382 

The probability of a somatic L1 insertion influencing phenotype presumably scales with the 383 

number of neurons carrying that event. However, a functional impact is yet to be discerned for any 384 

neuronal L1 insertion detected to date, and it remains to be seen whether donor L1s mobile in the 385 

brain are genetically associated with human neurological traits. Our discovery of three Chr13∆31L1 386 

alleles resolves a prior discrepancy whereby an L1 insertion was detected in vivo (Evrony et al., 387 

2015) and arose from a donor L1 considered immobile in vitro (Brouha et al., 2003). It is almost 388 

certain that different Chr13∆31L1 alleles were assayed in these two studies (Brouha et al., 2003; 389 

Evrony et al., 2015), highlighting a need to distinguish mobile and immobile donor L1 alleles 390 

found at the same genomic location. 391 

To build a consensus view of somatic retrotransposition in the hippocampus, we applied 392 

WGS, RC-seq and L1-IP to MDA-amplified neurons. The proportion of neurons found to harbor 393 

a somatic L1 insertion resembled prior estimates based on WGS and targeted L1 sequencing of 394 

MDA-amplified cortical (Evrony et al., 2012; Evrony et al., 2015) and hippocampal neurons 395 

(Erwin et al., 2016), and is lower than that of a previous RC-seq analysis of MALBAC-amplified 396 

hippocampal neurons (Upton et al., 2015). False positives can occur in single-cell analyses of L1 397 

insertions and other genomic variants (Faulkner and Garcia-Perez, 2017; McConnell et al., 2017). 398 

False negatives are, by contrast, harder to assess. We and others have previously assumed 399 
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sensitivity for heterozygous germline and somatic L1 insertions is similar in single-cell genomic 400 

analyses (Erwin et al., 2016; Evrony et al., 2012; Evrony et al., 2015; Upton et al., 2015). Notably, 401 

somatic L1 insertions carry long, pure polyA tails, while heterozygous L1s rarely do. Despite deep 402 

(47×) single-cell WGS, our sensitivity for somatic L1 insertions was, at most, ~15%, even without 403 

accounting for PCR validation false negatives. These considerations preclude an accurate 404 

calculation of L1 mobilization rate. Our results nonetheless demonstrate L1 mosaicism in 405 

hippocampal neurons at the most conservative standard of genomic analysis and PCR validation, 406 

as shown elsewhere in cortex (Evrony et al., 2015). More importantly, elucidation of YY1-407 

mediated L1 repression, and routes by which it is avoided, provides a mechanistic explanation for 408 

L1 retrotransposition during neurodevelopment, and positions YY1 as a major regulator of L1 409 

activity over the course of human evolution. 410 

 411 

STAR METHODS 412 

Detailed methods are provided in the online version of this paper. 413 
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 722 

FIGURE LEGENDS 723 

Figure 1. Somatic L1 insertion detection and characterization. 724 

(A) Human L1-Ta features. In the magnified 5ʹUTR view (bottom), SD1 and SD2 represent splice 725 

donor sites within ORF0 that can splice into upstream antisense transcript exons. Transcription 726 

factor binding sites are represented as boxes above (sense) or below (antisense) the 5ʹUTR. Solid 727 

boxes represent experimentally validated sites. Orange strokes represent CpG dinucleotides. 728 

(B) An integrated genomic approach to detect somatic L1 insertions in hippocampal neurons. Bulk 729 

DNA from hippocampus and liver, and from 24 MDA-amplified hippocampal neurons, was 730 

analyzed with Illumina WGS, RC-seq and L1-IP. A somatic L1 insertion was found on 731 

chromosome 3 in neuron-#15 by each approach. Reads spanning the 5′ or 3′ L1-genome junctions 732 

of this event are shown. 733 

(C) PCR validation of a somatic L1 insertion found in CTRL-36 neuron-#15. Primers flanking the 734 

L1 boundaries (symbols α, δ, γ and β) were used to amplify the L1 3ʹ junction (δ+β), 5ʹ junction 735 

(α+γ) and complete sequence (α+β). CTRL-36 templates included WGA material from neurons 736 
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#14-16, as well as bulk hippocampus (HIP) and liver (LIV) gDNA. Reactions involving CTRL-42 737 

liver gDNA and no template control (NTC) were also performed. 738 

(D) Complete characterization of the somatic L1 insertion via capillary sequencing. Integration 739 

site nucleotides highlighted in red correspond to the target site duplication (TSD). The L1 was 5ʹ 740 

truncated with an inversion/deletion, as represented by L1-Ta consensus position numerals inside 741 

the L1. A 3ʹ transduction (brown box) indicated a donor L1 on chromosome 13 (Chr13∆31L1).  742 

Please see Figure S1, and Tables S1 and S2 for further PCR validation details. 743 

 744 

Figure 2. Chr13∆31L1 allele retrotransposition activity. 745 

(A) Chr13∆31L1 genotype among 8 individuals (CTRL-#). Three Chr13∆31L1 alleles in this cohort 746 

were resolved by capillary sequencing. Their relationship based on sequence similarity is shown 747 

in the cladogram. Nucleotide variants among the three alleles and the reference genome (REF) 748 

allele, when compared to the L1-Ta consensus (top), are shown. Non-synonymous mutations are 749 

highlighted in red. 750 

(B) Chr13∆31L1 alleles in a cultured HeLa cell retrotransposition assay (Moran et al., 1996). 751 

Experimental approach involving neomycin (G418) selection is summarized at top (S, seeding; T, 752 

transfection; M, change of media; R, result analysis; PA, polyadenylation signal; CMVp, CMV 753 

promoter; numbers represent days of treatment with antibiotic). Elements were tested for 754 

retrotransposition efficiency (RTSN), with and without CMVp, and included positive (L1.3) and 755 

negative controls (L1.3 RT-), Chr13∆31L1 alleles 1-3 (A1, A2 and A3), and allele 1 with its 5ʹ 756 

truncation restored (A1+31). Histogram values were normalized to L1.3 (+CMVp). Representative 757 

well pictures, including an untransfected control, are shown. 758 

(C) Chr13∆31L1 allele retrotransposition, assayed as in (B) except using an EGFP-based reporter 759 

system with puromycin selection (Ostertag et al., 2000), in differentiating and non-differentiating 760 

PA-1 cells. Grey and white bars represent cells treated, or not treated, respectively, with 761 

trichostatin A (TSA), which is known to release the EGFP reporter from silencing (Garcia-Perez 762 

et al., 2010). 763 

(D) Dual-luciferase promoter reporter assay for Chr13∆31L1 alleles in sense and antisense 764 

orientation, in HeLa and PA-1 cell lines. Histogram values were normalized to the positive control 765 

enhanced SV40 promoter (eSV40p). EV, empty vector; A1, Chr13∆31L1 allele 1; A2/3, alleles 2 766 

and 3 (identical sequences); A1+31 and A2/3+31, alleles with 5ʹ truncation restored. 767 
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Note: Panels (B-D) show mean values ± SD (**, p<0.01 and ****<0.0001).  768 

Please see Figure S2 for Chr13∆31L1 genotyping, and L1 reporter assays in HEK293T cells. 769 

 770 

Figure 3. Chr13∆31L1 is hypomethylated in human tissues and neuronal lineage cells. 771 

(A) Schematic illustration of the locus-specific, high-throughput analysis of L1 promoter CpG 772 

methylation. For each L1, depicted on four different chromosomes, a bisulfite converted 5ʹUTR 773 

and genomic flank is PCR amplified using a specific primer (α, β, γ or δ) matched with a common 774 

L1 reverse primer (rev). Independent PCR products are combined into a barcoded Illumina library, 775 

mixed with libraries similarly generated for other samples, and analyzed via 2×300mer 776 

sequencing. Note: genomic flanks are colored to match their chromosome of origin. 777 

(B) Methylation of the overall L1-Ta family, Chr13∆31L1, two other 31nt 5ʹ truncated elements 778 

(Chr5∆31L1 and Chr6∆31L1) and two full-length elements (Chr2∆2L1 and Chr6FLL1), in CTRL-36 779 

hippocampus and liver tissues and H1 hESC neurodifferentiation. Each cartoon panel corresponds 780 

to an amplicon and displays 50 non-identical sequences (black circle, methylated CpG; white 781 

circle, unmethylated CpG; ×, mutated CpG) extracted at random from the corresponding and much 782 

larger Illumina library. The percentage of methylated CpG is indicated in the lower right corner of 783 

each cartoon. The Chr13∆31L1 filled (FF) and empty (EF) allele genomic flanks were 784 

discriminated by a linked SNP (rs9508517). Note: Chr5∆31L1 was absent from the H1 genome. 785 

(C) Methylation of the overall L1-Ta family and, where present, Chr13∆31L1, Chr5∆31L1, 786 

Chr6∆31L1, Chr2∆2L1 and Chr6FLL1 in hippocampus and liver of 8 individuals. Data represent the 787 

mean percentage methylation ± SD obtained from 50 random sequences per amplicon and sample 788 

(***, p<0.001 and ****<0.0001). 789 

(D) Methylation of the overall L1-Ta family, Chr13∆31L1, Chr6∆31L1, Chr2∆2L1 and Chr6FLL1 790 

during hESC neurodifferentiation, obtained by randomly sampling 1,000 sequences per amplicon 791 

and sample. 792 

Please see Figure S3 and Table S2 for additional methylation analysis information. 793 

 794 

Figure 4. A YY1 binding site mediates L1 promoter methylation. 795 

(A) Promoter CpG methylation (top graph) and proportion of unmethylated reads (bottom graph) 796 

for a cohort of full-length and 5ʹ truncated L1-Ta elements, and the overall L1-Ta family, in CTRL-797 

36 liver tissue. Data were obtained via the analysis of 50 non-identical random sequences per 798 
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amplicon. A dotted red line separates those L1s 5ʹ truncated by <14nt or ≥14nt. The L1 5ʹ end 799 

sequence is displayed above the histograms and the YY1 binding site is shown in red. Chr11∆14L1 800 

and Chr1∆21L1-LRE2 were not present in CTRL-36. 801 

(B) As for (A), except displaying data obtained from H1 neurodifferentiation and using 1,000 802 

randomly sampled reads per amplicon, with the exception of Chr22FLL1-TTC28 and Chr1∆21L1-803 

LRE2, where are represented by 50 reads each. A sequence logo for the YY1 binding site (Kim 804 

and Kim, 2009) is displayed along with the L1 5′ end sequence above the histograms. Chr6∆6L1, 805 

Chr22∆12L1 and Chr5∆31L1 were not present in the H1 cell line. 806 

(C) CpH methylation level at L1-Ta nucleotide +44 in the 28 L1-Ta elements analyzed in (B) 807 

during H1 neurodifferentiation. 808 

(D) Promoter CpG methylation level for the Chr17FLL1PA2 YY1 site double mutant, and the overall 809 

L1PA2 family, during hESC neurodifferentiation and in CTRL-36 liver tissue. Each cartoon panel 810 

displays 50 non-identical random sequences (black circle, methylated CpG; white circle, 811 

unmethylated CpG; ×, mutated CpG) matching each amplicon. The percentage of methylated CpG 812 

is indicated in the lower right corner of each cartoon. 813 

Please see Figure 3, Figure S4 and Table S4 for supporting L1 methylation data. 814 

 815 

Figure 5. YY1 mediates methylation of young L1 families. 816 

(A) KAP1 binding was enriched across full-length members of older (L1PA3-L1PA6) L1 families, 817 

whereas YY1 was bound more strongly to young (L1-Ta and L1PA2) families (left and middle). 818 

YY1 binding was lower among 5′ truncated young L1s, and full-length elements carrying YY1 819 

site mutations, than for young L1s with intact YY1 sites (right). KAP1 and YY1 hESC ChIP-seq 820 

data were obtained from prior studies (ENCODE Project Consortium, 2012; Turelli et al., 2014).  821 

(B) Genome-wide methylcytosine (mC) and hydroxymethylcytosine (hmC) percentages for CpG 822 

dinucleotides present in the first 300bp of L1-Ta and older L1 promoter sequences. Analyses were 823 

performed for NeuN+ CTRL-36 hippocampal neurons (top) as well as using published H1 hESC 824 

data (bottom) (ENCODE Project Consortium, 2012). Box plots indicate median, quartile and 825 

extrema values for groups of elements 5ʹ truncated by <14nt or ≥14nt within each L1 family (***, 826 

p<0.001).  827 

(C) As for (B), except displaying genome-wide hmC percentages obtained using published H1 828 

hESC data (Yu et al., 2012) (**, p<0.01 and ***, p<0.001). 829 
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(D) Chr13∆31L1 antisense transcript (NR_135320) expression during hESC neurodifferentiation 830 

(left y-axis), normalized to GAPDH (blue) or TBP (red). The TaqMan primer/probe design used 831 

to quantify NR_135320 abundance is shown above the graph. Primers (ε and δ) flank the probe, 832 

which in turn spanned the (NR_135320) splice junction. Values represent the mean ± SD (**, 833 

p<0.01, ***, p<0.001 and ****, p<0.0001). Chr13∆31L1 methylation (green, right y-axis) was 834 

determined by locus-specific bisulfite sequencing of DNA from the same samples. 835 

Please see Figure S5 for additional analyses of Chr13∆31L1 antisense transcription, and Figures 3 836 

and S3 for Chr13∆31L1 bisulfite sequencing results during H1 differentiation. 837 

 838 

Figure 6. Genomic environment influences donor L1 regulation. 839 

(A) Chr8∆3L1 locus methylation. Top: an expressed sequence tag (EST: DA461809, GENCODE), 840 

indicated an upstream RNA spliced into Chr8∆3L1, which coincided with a previously reported 5ʹ 841 

transduction in a somatic L1 insertion (Evrony et al., 2012). A potential transcription start site 842 

(TSS) for the spliced and transduced RNA template was delineated by FANTOM5 (Forrest et al., 843 

2014). Middle: Chr8∆3L1 promoter and upstream methylation cartoons displaying 50 random, non-844 

identical sequences (black circle, methylated CpG; white circle, unmethylated CpG; ×, mutated 845 

CpG). The percentage of methylated CpG is indicated in the lower right corner of each cartoon. 846 

Below: average Chr8∆3L1 promoter methylation in hippocampus (HIP) and liver (LIV) tissue from 847 

Chr8∆3L1 carrier individuals CTRL-28 and CTRL-42, and the upstream region in all 8 individuals. 848 

Values represent the mean methylation ± SD indicated by 50 random sequences corresponding to 849 

each amplicon and sample. Statistical differences were analyzed pairwise between upstream CpG 850 

dinucleotides (****, p<0.0001; ***, p<0.001, *, p<0.05). 851 

(B) Chr22FLL1-TTC28 promoter methylation in hippocampus (HIP) and liver (LIV) tissue. Values 852 

represent the mean methylation ± SD in 8 individuals. Chr22FLL1-TTC28 was significantly 853 

hypomethylated in liver tissues (****, p<0.0001). 854 

(C) Methylation of the Chr1∆21L1-LRE2 promoter and a ~2.7kb upstream L1PA13 copy during 855 

hESC neurodifferentiation. As indicated, the L1PA13 sequence contains an intact YY1 binding 856 

site utilized in H1 cells. Cartoon panels were generated as in (A). 857 

Please see Figures S4 and S6 and Table S2 for supporting L1 methylation data. 858 
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(Anders et al., 2015) a (Bolger et al., 2014) a (DeLuca et al., 2012) a (Dobin et al., 2013) a 860 

(Dombroski et al., 1993) a (Ewing et al., 2015) a (Ewing and Kazazian, 2011) a (Flicek et al., 861 

2012) a (Guo et al., 2013) a (Helman et al., 2014) a (Heras et al., 2013) a (Hormozdiari et al., 2011) 862 

a (Kopera et al., 2016) a (Kuhn et al., 2014) a (Kumaki et al., 2008) a (Li, 2013) a (Magoc and 863 

Salzberg, 2011) a (Robinson et al., 2010) a (Sanchez-Luque et al., 2017) a (Stewart et al., 2011) a 864 

(Sudmant et al., 2015) a (Tarasov et al., 2015) a (Wang et al., 2006)a (Witherspoon et al., 2010) a 865 

(Witherspoon et al., 2013) 866 


