41 research outputs found

    Feline primary erythrocytosis: a multicentre case series of 18 cats

    Get PDF
    A retrospective multicentre case series of feline primary erythrocytosis (PE) was evaluated. The aim was to gain better understanding of disease presentation and progression to guide management and prognostication. Case records were assessed for evidence of increased packed cell volume (PCV; >48%), sufficient investigation to rule out relative and secondary erythrocytosis, and follow-up data for at least 12 months or until death. Eighteen cats were included in the case series. No significant trends in signalment were noted. Seizures and mentation changes were the most common presenting signs (both n = 10). Median PCV was 70% (median total protein concentration of 76 g/l) with no other consistent haematological changes. Sixteen cats survived to discharge. Phlebotomy was performed initially in 15/16 surviving animals and performed after discharge in 10/16. Hydroxyurea was the most common adjunctive therapy, used in 10/16 cats. Of the 16 patients surviving to discharge, 14 patients were still alive at the conclusion of the study (survival time >17 months post-discharge), with the two non-survivors having lived for 5 years or more after diagnosis. PCV, when stabilised, did not correlate with resolution of clinical signs

    Teledentistry: A New Evolution in Dentistry

    Get PDF
    Teledentistry is a new field that combines telecommunication to advanced dental care. Most of the dentists are not aware about the goals, advantages of teledentistry and how it can be used to improve the delivery of oral healthcare and lower its costs. It also has the potential to eliminate the disparities in oral health care between rural and urban communities. In dentistry, it can be used by specialists in various branches and can serve the general dentist too. Some barriers still exist for teledentistry practice, which includes legal, educational and insurance issues. In spite of these barriers, telemedicine and teledentistry have showed tremendous growth in recent years . This article places emphasis on how teledentistry can be a cost effective answer to the dentists and their patients

    Indexed Left Atrial Adipose Tissue Area Is Associated With Severity of Atrial Fibrillation and Atrial Fibrillation Recurrence Among Patients Undergoing Catheter Ablation

    Get PDF
    Background: Epicardial adipose tissue (EAT) has been associated with adverse left atrial (LA) remodeling and atrial fibrillation (AF) outcomes, possibly because of paracrine signaling. Objectives: We examined factors associated with a novel measure of EAT i.e., indexed LAEAT (iLAEAT) and its prognostic significance after catheter ablation (CA) of atrial fibrillation (AF). Methods: We performed a retrospective analysis of 274 participants with AF referred for CA. LAEAT area was measured from a single pre-ablation CT image and indexed to body surface area (BSA) to calculate iLAEAT. Clinical, echocardiographic data and 1-year AF recurrence rates after CA were compared across tertiles of iLAEAT. We performed logistic regression analysis adjusting for factors associated with AF to examine relations between iLAEAT and AF recurrence. Results: Mean age of participants was 61 +/- 10 years, 136 (49%) were women, mean BMI was 32 +/- 9 kg/m(2) and 85 (31%) had persistent AF. Mean iLAEAT was 0.82 +/- 0.53 cm(2)/m(2). Over 12-months, 109 (40%) had AF recurrence. Participants in the highest iLAEAT tertile were older, had higher CHA2DS2VASC scores, more likely to be male, have greater LA volume, and were more likely to have persistent (vs. paroxysmal) type AF than participants in the lowest iLAEAT tertile (p for all \u3c 0.05). In regression analyses, iLAEAT was associated with higher odds of AF recurrence (OR = 2.93; 95% CI 1.34-6.43). Conclusions: iLAEAT can quantify LA adipose tissue burden using standard CT images. It is strongly associated with AF risk factors and outcomes, supporting the hypothesis that EAT plays a role in the pathophysiology of AF

    The use of high-dose immunoglobulin M-enriched human immunoglobulin in dogs with immune-mediated hemolytic anemia.

    Get PDF
    BACKGROUND: The IV use of human immunoglobulin (hIVIG) in dogs with primary immune-mediated hemolytic anemia (IMHA) has been described previously, but herein we describe the use of high-dose IgM-enriched hIVIG (Pentaglobin). HYPOTHESIS/OBJECTIVES: Dogs treated with high-dose Pentaglobin will experience shorter time to remission and hospital discharge and have decreased transfusion requirements compared to dogs receiving standard treatment alone. ANIMALS: Fourteen client-owned dogs diagnosed with primary IMHA at specialist referral hospitals in the United Kingdom. METHODS: All prospectively enrolled dogs received prednisolone, dexamethasone or both along with clopidogrel. Patients were randomized to receive Pentaglobin at 1 g/kg on up to 2 occasions, or to serve as controls. No additional immunosuppressive drugs were allowed within the first 7 days of treatment. Remission was defined as stable PCV for 24 hours followed by an increase in PCV. RESULTS: Ten of 11 dogs from the treatment group and 2 of 3 dogs from the control group achieved remission and survived until hospital discharge. Survival and time to remission were not significantly different between groups. The volume of packed red blood cells transfused, normalized for body weight, was not significantly different between groups. Potential adverse reactions to Pentaglobin occurred in 2 dogs, but their clinical signs may have been related to the underlying disease. CONCLUSIONS AND CLINICAL IMPORTANCE: Treatment with high-dose Pentaglobin was well tolerated by dogs with primary IMHA but no significant advantage was found in this small study. Additional studies examining larger groups and subpopulations of dogs with primary IMHA associated with a poorer prognosis are warranted

    Causes of thrombocytopenia in dogs in the United Kingdom: A retrospective study of 762 cases

    Get PDF
    Background: Thrombocytopenia is a common laboratory abnormality in dogs, and numerous diseases have been associated with its development. Estimates for the sensitivity and specificity of the degree of reduction of platelet concentration for the diagnosis of primary immune‐mediated thrombocytopenia (pITP) have not been reported. Objectives: To report the prevalence of different causes of thrombocytopenia in dogs in the United Kingdom and to investigate the utility of platelet concentration to differentiate causes of thrombocytopenia. Methods: Medical records of 762 dogs with thrombocytopenia presented to seven referral hospitals from January 2017 to December 2018 were retrospectively reviewed. Cases were assigned into the following categories: pITP, infectious diseases, neoplasia, inflammatory/other immune‐mediated disorders and miscellaneous causes. The prevalence of the different categories was estimated, and platelet concentrations were compared. Receiver‐operating characteristic (ROC) curves were used to investigate the utility of platelet concentration to differentiate between causes of thrombocytopenia. Results: The most common disease category associated with thrombocytopenia was neoplasia (27.3%), followed by miscellaneous causes (26.9%), pITP (18.8%), inflammatory/immune‐mediated disorders (14.4%) and infectious diseases (12.6%). Dogs with pITP had significantly lower platelet concentrations (median 8 × 109/L, range: 0–70 × 109/L) than dogs in the other four categories. Platelet concentration was useful for distinguishing pITP from other causes of thrombocytopenia (area under ROC curve = 0.89, 95% confidence interval 0.87, 0.92), with a platelet concentration ≤12 × 109/L being 60% sensitive and 90% specific. Conclusions: Severe thrombocytopenia was highly specific for a diagnosis of pITP, which was more prevalent in this UK population of thrombocytopenic dogs compared with previous epidemiological studies. Conversely, the proportion of dogs with infectious diseases was lower than in previous reports from other locations

    Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49\ub74% (95% uncertainty interval [UI] 46\ub74–52\ub70). The TFR decreased from 4\ub77 livebirths (4\ub75–4\ub79) to 2\ub74 livebirths (2\ub72–2\ub75), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83\ub78 million people per year since 1985. The global population increased by 197\ub72% (193\ub73–200\ub78) since 1950, from 2\ub76 billion (2\ub75–2\ub76) to 7\ub76 billion (7\ub74–7\ub79) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2\ub70%; this rate then remained nearly constant until 1970 and then decreased to 1\ub71% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2\ub75% in 1963 to 0\ub77% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2\ub77%. The global average age increased from 26\ub76 years in 1950 to 32\ub71 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59\ub79% to 65\ub73%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1\ub70 livebirths (95% UI 0\ub79–1\ub72) in Cyprus to a high of 7\ub71 livebirths (6\ub78–7\ub74) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0\ub708 livebirths (0\ub707–0\ub709) in South Korea to 2\ub74 livebirths (2\ub72–2\ub76) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0\ub73 livebirths (0\ub73–0\ub74) in Puerto Rico to a high of 3\ub71 livebirths (3\ub70–3\ub72) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2\ub70% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress. Funding: Bill & Melinda Gates Foundation

    Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49·4% (95% uncertainty interval [UI] 46·4–52·0). The TFR decreased from 4·7 livebirths (4·5–4·9) to 2·4 livebirths (2·2–2·5), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83·8 million people per year since 1985. The global population increased by 197·2% (193·3–200·8) since 1950, from 2·6 billion (2·5–2·6) to 7·6 billion (7·4–7·9) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2·0%; this rate then remained nearly constant until 1970 and then decreased to 1·1% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2·5% in 1963 to 0·7% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2·7%. The global average age increased from 26·6 years in 1950 to 32·1 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59·9% to 65·3%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1·0 livebirths (95% UI 0·9–1·2) in Cyprus to a high of 7·1 livebirths (6·8–7·4) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0·08 livebirths (0·07–0·09) in South Korea to 2·4 livebirths (2·2–2·6) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0·3 livebirths (0·3–0·4) in Puerto Rico to a high of 3·1 livebirths (3·0–3·2) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2·0% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress

    Erratum: Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Interpretation: By quantifying levels and trends in exposures to risk factors and the resulting disease burden, this assessment offers insight into where past policy and programme efforts might have been successful and highlights current priorities for public health action. Decreases in behavioural, environmental, and occupational risks have largely offset the effects of population growth and ageing, in relation to trends in absolute burden. Conversely, the combination of increasing metabolic risks and population ageing will probably continue to drive the increasing trends in non-communicable diseases at the global level, which presents both a public health challenge and opportunity. We see considerable spatiotemporal heterogeneity in levels of risk exposure and risk-attributable burden. Although levels of development underlie some of this heterogeneity, O/E ratios show risks for which countries are overperforming or underperforming relative to their level of development. As such, these ratios provide a benchmarking tool to help to focus local decision making. Our findings reinforce the importance of both risk exposure monitoring and epidemiological research to assess causal connections between risks and health outcomes, and they highlight the usefulness of the GBD study in synthesising data to draw comprehensive and robust conclusions that help to inform good policy and strategic health planning
    corecore