11 research outputs found

    Biogeochemistry of dissolved organic matter in Arctic Ocean waters charged with methane

    Get PDF
    Dissolved organic matter (DOM) is defined as organic matter that is smaller than a nominal pore size filter (e.g., 0.7 ”m) that passes through during the filtration of aquatic samples. It comprises the largest reservoir of reduced carbon (700 Pg C) in the oceans. The DOM pool is in close interaction with all the elemental cycles and food chains in the ocean and is an essential component in the marine microbial loop. Methane is seeping from numerous geological sources in the Arctic Ocean associated with multiple mechanisms that elevate methane production and release. Independent of the mechanism, however, liberated methane is predominantly consumed in the water column by methanotrophic bacteria (MOB), which use methane as a source of carbon and energy during an aerobic enzymatic reaction called methane oxidation (MOx). In sedimentary fluid flow systems such as cold seeps or hydrothermal vents, the amount of methane release and subsequent MOx would be substantial and further trigger other ecosystem processes such as bacterial growth and heterotrophic consumption and consequent mechanisms that alter DOM composition in the water column. Since methane is one of the most potent greenhouse gasses in the atmosphere and due to its subsequent effect on global warming, it has been quantified extensively in the oceanic environments and its fate in the water column has been investigated in different types of geological settings. However, the effects of methane emanation and methane-driven processes on DOM dynamics in the water column have been merely constrained. The main objective of this thesis was to unravel the modifications of DOM composition in relation to methane release in the Arctic Ocean cold seeps and hydrothermal vents

    Compositions of dissolved organic matter in the ice-covered waters above the Aurora hydrothermal vent system, Gakkel Ridge, Arctic Ocean

    Get PDF
    Hydrothermal vents modify and displace subsurface dissolved organic matter (DOM) into the ocean. Once in the ocean, this DOM is transported together with elements, particles, dissolved gases and biomass along with the neutrally buoyant plume layer. Considering the number and extent of actively venting hydrothermal sites in the oceans, their contribution to the oceanic DOM pool may be substantial. Here, we investigate the dynamics of DOM in relation to hydrothermal venting and related processes at the as yet unexplored Aurora hydrothermal vent field within the ultraslow-spreading Gakkel Ridge in the Arctic Ocean at 82.9∘ N. We examined the vertical distribution of DOM composition from sea ice to deep waters at six hydrocast stations distal to the active vent and its neutrally buoyant plume layer. In comparison to background seawater, we found that the DOM in waters directly affected by the hydrothermal plume was molecularly less diverse and 5 %–10 % lower in number of molecular formulas associated with the molecular categories related to lipid and protein-like compounds. On the other hand, samples that were not directly affected by the plume were chemically more diverse and had a higher percentage of chemical formulas associated with the carbohydrate-like category. Our results suggest that hydrothermal processes at Aurora may influence the DOM distribution in the bathypelagic ocean by spreading more thermally and/or chemically induced compositions, while DOM compositions in epipelagic and mesopelagic layers are mainly governed by the microbial carbon pump dynamics and surface-ocean–sea-ice interactionspublishedVersio

    Elevated methane alters dissolved organic matter composition in the Arctic Ocean cold seeps

    Get PDF
    Cold seeps release methane (CH4) from the seafloor to the water column, which fuels microbially mediated aerobic methane oxidation (MOx). Methane-oxidising bacteria (MOB) utilise excess methane, and the MOB biomass serves as a carbon source in the food web. Yet, it remains unclear if and how MOx modifies the composition of dissolved organic matter (DOM) in cold seeps. We investigated MOx rates, DOM compositions and the microbial community during ex-situ incubations of seawater collected from a cold seep site at Norskebanken (north of the Svalbard archipelago) in the Arctic Ocean. Samples were incubated with and without methane amendments. Samples amended with methane (∌1 ”M final concentration) showed elevated rates of MOx in both seep and non-seep incubations. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) analyses showed that the number of DOM formulas (i.e., molecular diversity) increased by up to 39% in these incubations. In contrast, the number of formulas decreased by 20% in samples not amended with methane, both from non-seep and seep locations. DOM composition was thus altered towards a more diverse and heterogeneous composition along with elevated methanotrophic activity in methane-amended conditions. In addition to microbial DOM production, abating microbial diversity indicates that elevated DOM diversity was potentially related to grazing pressure on bacteria. The diversity of DOM constituents, therefore, likely increased with the variety of decaying cells contributing to DOM production. Furthermore, based on a principal coordinate analysis, we show that the final DOM composition of non-seep samples amended with methane became more resemblant to that of seep samples. This suggests that methane intrusions will affect water column DOM dynamics similarly, irrespective of the water column’s methane history

    Hot Vents Beneath an Icy Ocean: The Aurora Vent Field, Gakkel Ridge, Revealed

    Get PDF
    Evidence of hydrothermal venting on the ultra-slow spreading Gakkel Ridge in the Central Arctic Ocean has been available since 2001, with first visual evidence of black smokers on the Aurora Vent Field obtained in 2014. But it was not until 2021 that the first ever remotely operated vehicle (ROV) dives to hydrothermal vents under permanent ice cover in the Arctic were conducted, enabling the collection of vent fluids, rocks, microbes, and fauna. In this paper, we present the methods employed for deep-sea ROV operations under drifting ice. We also provide the first description of the Aurora Vent Field, which includes three actively venting black smokers and diffuse flow on the Aurora mound at ~3,888 m depth on the southern part of the Gakkel Ridge (82.5°N). The biological communities are dominated by a new species of cocculinid limpet, two small gastropods, and a melitid amphipod. The ongoing analyses of Aurora Vent Field samples will contribute to positioning the Gakkel Ridge hydrothermal vents in the global biogeographic puzzle of hydrothermal vents

    Compositional differences in dissolved organic matter between Arctic cold seeps versus non-seep sites at the Svalbard continental margin and the Barents sea

    Get PDF
    Dissociating gas hydrates, submerged permafrost, and gas bearing sediments release methane to the water column from a multitude of seeps in the Arctic Ocean. The seeping methane dissolves and supports the growth of aerobic methane oxidizing bacteria (MOB), but the effect of seepage and seep related biogeochemical processes on water column dissolved organic matter (DOM) dynamics is not well constrained. We compared dissolved methane, nutrients, chlorophyll, and particulate matter concentrations and methane oxidation (MOx) rates from previously characterized seep and non-seep areas at the continental margin of Svalbard and the Barents Sea in May and June 2017. DOM molecular composition was determined by Electrospray Ionization Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS). We found that the chemical diversity of DOM was 3 to 5% higher and constituted more protein- and lipid-like composition near methane seeps when compared to non-seep areas. Distributions of nutrients, chlorophyll, and particulate matter however, were essentially governed by the water column hydrography and primary production. We surmise that the organic intermediates directly derived from seepage or indirectly from seep-related biogeochemical processes, e.g., MOx, modifies the composition of DOM leading to distinct DOM molecular-level signatures in the water column at cold seeps

    Compositions of dissolved organic matter in the ice-covered waters above the Aurora hydrothermal vent system, Gakkel Ridge, Arctic Ocean

    No full text
    Hydrothermal vents modify and displace subsurface dissolved organic matter (DOM) into the ocean. Once in the ocean, this DOM is transported together with elements, particles, dissolved gases and biomass along with the neutrally buoyant plume layer. Considering the number and extent of actively venting hydrothermal sites in the oceans, their contribution to the oceanic DOM pool may be substantial. Here, we investigate the dynamics of DOM in relation to hydrothermal venting and related processes at the as yet unexplored Aurora hydrothermal vent field within the ultraslow-spreading Gakkel Ridge in the Arctic Ocean at 82.9∘ N. We examined the vertical distribution of DOM composition from sea ice to deep waters at six hydrocast stations distal to the active vent and its neutrally buoyant plume layer. In comparison to background seawater, we found that the DOM in waters directly affected by the hydrothermal plume was molecularly less diverse and 5 %–10 % lower in number of molecular formulas associated with the molecular categories related to lipid and protein-like compounds. On the other hand, samples that were not directly affected by the plume were chemically more diverse and had a higher percentage of chemical formulas associated with the carbohydrate-like category. Our results suggest that hydrothermal processes at Aurora may influence the DOM distribution in the bathypelagic ocean by spreading more thermally and/or chemically induced compositions, while DOM compositions in epipelagic and mesopelagic layers are mainly governed by the microbial carbon pump dynamics and surface-ocean–sea-ice interaction

    Contrasting Methane Seepage Dynamics in the Hola Trough Offshore Norway: Insights From Two Different Summers

    No full text
    This study investigates the temporal variations in methane concentration and flare activity in the Hola trough (offshore Norway) during May 2018 and June 2022. Between these time periods, methane seep activity exhibits 3.5 times increase, as evidenced by hydroacoustic measurements. As the seep area in the Hola trough is constantly within the hydrate stability zone, the observed increase cannot be attributed to migration of its shallow boundary due to temperature increase. However, a combination of low tide conditions resulting in a lower sediment pore pressure and a bottom water temperature increase resulting in a lower methane solubility is likely to explain the increase in the number of seeps observed in June 2022. The hypothesis of tide influence is supported by data collected from a piezometer deployed and recovered during the cruise showing that the tidal effect was observed 3 m below the seafloor. Despite the numerous methane seeps detected, methane concentration and gas flow rates near the seafloor were low (<19 nM and <70 mL min−1, respectively) compared to other areas with methane seep activity. This is likely due to strong currents rapidly dispersing methane in the water column. Sub‐seafloor investigations identified pathways for gas migration in methane seep areas, influenced by topography. This study provides valuable insights into the temporal dynamics of methane concentrations, flare activity, and gas distribution in the Hola trough, contributing to our understanding of offshore methane dynamics in the region

    Hot vents beneath an icy ocean: the Aurora Vent Field, Gakkel Ridge, revealed

    No full text
    Evidence of hydrothermal venting on the ultra-slow spreading Gakkel Ridge in the Central Arctic Ocean has been available since 2001, with first visual evidence of black smokers on the Aurora Vent Field obtained in 2014. But it was not until 2021 that the first ever remotely operated vehicle (ROV) dives to hydrothermal vents under permanent ice cover in the Arctic were conducted, enabling the collection of vent fluids, rocks, microbes, and fauna. In this paper, we present the methods employed for deep-sea ROV operations under drifting ice. We also provide the first description of the Aurora Vent Field, which includes three actively venting black smokers and diffuse flow on the Aurora mound at ~3,888 m depth on the southern part of the Gakkel Ridge (82.5°N). The biological communities are dominated by a new species of cocculinid limpet, two small gastropods, and a melitid amphipod. The ongoing analyses of Aurora Vent Field samples will contribute to positioning the Gakkel Ridge hydrothermal vents in the global biogeographic puzzle of hydrothermal vents

    Incidence and clinical characteristics of acute rheumatic fever in Turkey: Results of a nationwide multicentre study

    No full text
    © 2021 Paediatrics and Child Health Division (The Royal Australasian College of Physicians)Aim: To evaluate the incidence and clinical features of acute rheumatic fever (ARF) in Turkey, following the revised Jones criteria in 2015. Methods: This multicentre study was designed by the Acquired Heart Diseases Working Group of the Turkish Pediatric Cardiology and Pediatric Cardiac Surgery Association in 2016. The data during the first attack of 1103 ARF patients were collected from the paediatric cardiologists between 1 January 2016 and 31 December 2016. Results: Turkey National Institute of Statistics records of 2016 were used for the determination of ARF incidence with regard to various cities and regions separately. The estimated incidence rate of ARF was 8.84/100 000 in Turkey. The ARF incidence varied considerably among different regions. The highest incidence was found in the Eastern Anatolia Region as 14.4/100 000, and the lowest incidence was found in the Black Sea Region as 3.3/100 000 (P < 0.05). Clinical carditis was the most common finding. The incidence of clinical carditis, subclinical carditis, polyarthritis, aseptic monoarthritis, polyarthralgia and Sydenham's Chorea was 53.5%, 29.1%, 52.8%, 10.3%, 18.6% and 7.9%, respectively. The incidences of clinical carditis, subclinical carditis, polyarthritis and polyarthralgia were found to be significantly different among different regions (P < 0.05). Conclusion: The findings of this nationwide screening of ARF suggest that Turkey should be included in the moderate-risk group
    corecore