1,599 research outputs found

    New reductions of integrable matrix PDEs: Sp(m)Sp(m)-invariant systems

    Full text link
    We propose a new type of reduction for integrable systems of coupled matrix PDEs; this reduction equates one matrix variable with the transposition of another multiplied by an antisymmetric constant matrix. Via this reduction, we obtain a new integrable system of coupled derivative mKdV equations and a new integrable variant of the massive Thirring model, in addition to the already known systems. We also discuss integrable semi-discretizations of the obtained systems and present new soliton solutions to both continuous and semi-discrete systems. As a by-product, a new integrable semi-discretization of the Manakov model (self-focusing vector NLS equation) is obtained.Comment: 33 pages; (v4) to appear in JMP; This paper states clearly that the elementary function solutions of (a vector/matrix generalization of) the derivative NLS equation can be expressed as the partial xx-derivatives of elementary functions. Explicit soliton solutions are given in the author's talks at http://poisson.ms.u-tokyo.ac.jp/~tsuchida

    Serre's "formule de masse" in prime degree

    Full text link
    For a local field F with finite residue field of characteristic p, we describe completely the structure of the filtered F_p[G]-module K^*/K^*p in characteristic 0 and $K^+/\wp(K^+) in characteristic p, where K=F(\root{p-1}\of F^*) and G=\Gal(K|F). As an application, we give an elementary proof of Serre's mass formula in degree p. We also determine the compositum C of all degree p separable extensions with solvable galoisian closure over an arbitrary base field, and show that C is K(\root p\of K^*) or K(\wp^{-1}(K)) respectively, in the case of the local field F. Our method allows us to compute the contribution of each character G\to\F_p^* to the degree p mass formula, and, for any given group \Gamma, the contribution of those degree p separable extensions of F whose galoisian closure has group \Gamma.Comment: 36 pages; most of the new material has been moved to the new Section

    Modelling an abrasive wear experiment by the boundary element method

    No full text
    This Note presents a computational technique for simulating friction-induced wear in a tribology experiment on a plan/plan, ring-on-disc contact configuration. The boundary element method results in modest computing times and facilitates the mesh modifications used for tracking the wear profile evolution. A typical wear simulation result is presented and discussed

    Tribological and corrosion wear of graphite ring against Ti6Al4V disk in artificial sea water

    Get PDF
    Severe degradations result from the friction of two antagonists in sea water environment. It is proposed to evaluate materials resistance to wear with a tribocorrosion experimental set-up which is mechanically and electrochemically instrumented. The method is illustrated with graphite and Ti6Al4V.The deposition of graphite on Ti6Al4V samples is observed and modifies the contact characteristics. Processes of graphite wear due to mechanical effect are characterised. Observations clearly indicate that Ti6Al4V degradations depend on the electrochemical potential imposed and more precisely on the electrochemical conditions in the contact zone

    N=2 Gauge Theories: Congruence Subgroups, Coset Graphs and Modular Surfaces

    Get PDF
    We establish a correspondence between generalized quiver gauge theories in four dimensions and congruence subgroups of the modular group, hinging upon the trivalent graphs which arise in both. The gauge theories and the graphs are enumerated and their numbers are compared. The correspondence is particularly striking for genus zero torsion-free congruence subgroups as exemplified by those which arise in Moonshine. We analyze in detail the case of index 24, where modular elliptic K3 surfaces emerge: here, the elliptic j-invariants can be recast as dessins d'enfant which dictate the Seiberg-Witten curves.Comment: 42+1 pages, 5 figures; various helpful comments incorporate

    Construction of Self-Dual Integral Normal Bases in Abelian Extensions of Finite and Local Fields

    Get PDF
    Let F/EF/E be a finite Galois extension of fields with abelian Galois group Γ\Gamma. A self-dual normal basis for F/EF/E is a normal basis with the additional property that TrF/E(g(x),h(x))=δg,hTr_{F/E}(g(x),h(x))=\delta_{g,h} for g,h∈Γg,h\in\Gamma. Bayer-Fluckiger and Lenstra have shown that when char(E)≠2char(E)\neq 2, then FF admits a self-dual normal basis if and only if [F:E][F:E] is odd. If F/EF/E is an extension of finite fields and char(E)=2char(E)=2, then FF admits a self-dual normal basis if and only if the exponent of Γ\Gamma is not divisible by 44. In this paper we construct self-dual normal basis generators for finite extensions of finite fields whenever they exist. Now let KK be a finite extension of \Q_p, let L/KL/K be a finite abelian Galois extension of odd degree and let \bo_L be the valuation ring of LL. We define AL/KA_{L/K} to be the unique fractional \bo_L-ideal with square equal to the inverse different of L/KL/K. It is known that a self-dual integral normal basis exists for AL/KA_{L/K} if and only if L/KL/K is weakly ramified. Assuming p≠2p\neq 2, we construct such bases whenever they exist

    Homotopy Lie algebras, lower central series and the Koszul property

    Full text link
    Let X and Y be finite-type CW-complexes (X connected, Y simply connected), such that the rational cohomology ring of Y is a k-rescaling of the rational cohomology ring of X. Assume H^*(X,Q) is a Koszul algebra. Then, the homotopy Lie algebra pi_*(Omega Y) tensor Q equals, up to k-rescaling, the graded rational Lie algebra associated to the lower central series of pi_1(X). If Y is a formal space, this equality is actually equivalent to the Koszulness of H^*(X,Q). If X is formal (and only then), the equality lifts to a filtered isomorphism between the Malcev completion of pi_1(X) and the completion of [Omega S^{2k+1}, Omega Y]. Among spaces that admit naturally defined homological rescalings are complements of complex hyperplane arrangements, and complements of classical links. The Rescaling Formula holds for supersolvable arrangements, as well as for links with connected linking graph.Comment: Published by Geometry and Topology at http://www.maths.warwick.ac.uk/gt/GTVol8/paper30.abs.htm

    Three embeddings of the Klein simple group into the Cremona group of rank three

    Get PDF
    We study the action of the Klein simple group G consisting of 168 elements on two rational threefolds: the three-dimensional projective space and a smooth Fano threefold X of anticanonical degree 22 and index 1. We show that the Cremona group of rank three has at least three non-conjugate subgroups isomorphic to G. As a by-product, we prove that X admits a Kahler-Einstein metric, and we construct a smooth polarized K3 surface of degree 22 with an action of the group G.Comment: 43 page

    Ramification theory for varieties over a local field

    Get PDF
    We define generalizations of classical invariants of wild ramification for coverings on a variety of arbitrary dimension over a local field. For an l-adic sheaf, we define its Swan class as a 0-cycle class supported on the wild ramification locus. We prove a formula of Riemann-Roch type for the Swan conductor of cohomology together with its relative version, assuming that the local field is of mixed characteristic. We also prove the integrality of the Swan class for curves over a local field as a generalization of the Hasse-Arf theorem. We derive a proof of a conjecture of Serre on the Artin character for a group action with an isolated fixed point on a regular local ring, assuming the dimension is 2.Comment: 159 pages, some corrections are mad
    • …
    corecore