research

Construction of Self-Dual Integral Normal Bases in Abelian Extensions of Finite and Local Fields

Abstract

Let F/EF/E be a finite Galois extension of fields with abelian Galois group Γ\Gamma. A self-dual normal basis for F/EF/E is a normal basis with the additional property that TrF/E(g(x),h(x))=δg,hTr_{F/E}(g(x),h(x))=\delta_{g,h} for g,hΓg,h\in\Gamma. Bayer-Fluckiger and Lenstra have shown that when char(E)2char(E)\neq 2, then FF admits a self-dual normal basis if and only if [F:E][F:E] is odd. If F/EF/E is an extension of finite fields and char(E)=2char(E)=2, then FF admits a self-dual normal basis if and only if the exponent of Γ\Gamma is not divisible by 44. In this paper we construct self-dual normal basis generators for finite extensions of finite fields whenever they exist. Now let KK be a finite extension of \Q_p, let L/KL/K be a finite abelian Galois extension of odd degree and let \bo_L be the valuation ring of LL. We define AL/KA_{L/K} to be the unique fractional \bo_L-ideal with square equal to the inverse different of L/KL/K. It is known that a self-dual integral normal basis exists for AL/KA_{L/K} if and only if L/KL/K is weakly ramified. Assuming p2p\neq 2, we construct such bases whenever they exist

    Similar works