38 research outputs found

    Dendritic Cells From the Cervical Mucosa Capture and Transfer HIV-1 via Siglec-1

    Get PDF
    HIV-1; Siglec-1; CervixVIH-1; Siglec-1; CèrvixVIH-1; Siglec-1; CérvixAntigen presenting cells from the cervical mucosa are thought to amplify incoming HIV-1 and spread infection systemically without being productively infected. Yet, the molecular mechanism at the cervical mucosa underlying this viral transmission pathway remains unknown. Here we identified a subset of HLA-DR+ CD14+ CD11c+ cervical DCs at the lamina propria of the ectocervix and the endocervix that expressed the type-I interferon inducible lectin Siglec-1 (CD169), which promoted viral uptake. In the cervical biopsy of a viremic HIV-1+ patient, Siglec-1+ cells harbored HIV-1-containing compartments, demonstrating that in vivo, these cells trap viruses. Ex vivo, a type-I interferon antiviral environment enhanced viral capture and trans-infection via Siglec-1. Nonetheless, HIV-1 transfer via cervical DCs was effectively prevented with antibodies against Siglec-1. Our findings contribute to decipher how cervical DCs may boost HIV-1 replication and promote systemic viral spread from the cervical mucosa, and highlight the importance of including inhibitors against Siglec-1 in microbicidal strategies

    A Novel Single-Cell FISH-Flow Assay Identifies Effector Memory CD4 + T cells as a Major Niche for HIV-1 Transcription in HIV-Infected Patients

    Get PDF
    Cells that actively transcribe HIV-1 have been defined as the "active viral reservoir" in HIV-infected individuals. However, important technical limitations have precluded the characterization of this specific viral reservoir during both treated and untreated HIV-1 infections. Here, we used a novel single-cell RNA fluorescence in situ hybridization-flow cytometry (FISH-flow) assay that requires only 15 million unfractionated peripheral blood mononuclear cells (PBMCs) to characterize the specific cell subpopulations that transcribe HIV RNA in different subsets of CD4 + T cells. In samples from treated and untreated HIV-infected patients, effector memory CD4 + T cells were the main cell population supporting HIV RNA transcription. The number of cells expressing HIV correlated with the plasma viral load, intracellular HIV RNA, and proviral DNA quantified by conventional methods and inversely correlated with the CD4 + T cell count and the CD4/CD8 ratio. We also found that after ex vivo infection of unstimulated PBMCs, HIV-infected T cells upregulated the expression of CD32. In addition, this new methodology detected increased numbers of primary cells expressing viral transcripts and proteins after ex vivo viral reactivation with latency reversal agents. This RNA FISH-flow technique allows the identification of the specific cell subpopulations that support viral transcription in HIV-1-infected individuals and has the potential to provide important information on the mechanisms of viral pathogenesis, HIV persistence, and viral reactivation. Persons infected with HIV-1 contain several cellular viral reservoirs that preclude the complete eradication of the viral infection. Using a novel methodology, we identified effector memory CD4 + T cells, immune cells preferentially located in inflamed tissues with potent activity against pathogens, as the main cells encompassing the transcriptionally active HIV-1 reservoir in patients on antiretroviral therapy. Importantly, the identification of such cells provides us with an important target for new therapies designed to target the hidden virus and thus to eliminate the virus from the human body. In addition, because of its ability to identify cells forming part of the viral reservoir, the assay used in this study represents an important new tool in the field of HIV pathogenesis and viral persistence

    Dendritic Cells From the Cervical Mucosa Capture and Transfer HIV-1 via Siglec-1

    Get PDF
    Altres ajuts: JM-P and NI-U are supported by the Spanish Secretariat of State of Research, Development and Innovation through grant SAF2016-80033-R. MG is supported by a Marie Curie Career Integration Grant (CIG) from the European Commission and by the Pla estratègic de recerca i innovació en salut (PERIS), from the Catalan government.Antigen presenting cells from the cervical mucosa are thought to amplify incoming HIV-1 and spread infection systemically without being productively infected. Yet, the molecular mechanism at the cervical mucosa underlying this viral transmission pathway remains unknown. Here we identified a subset of HLA-DR+ CD14+ CD11c+ cervical DCs at the lamina propria of the ectocervix and the endocervix that expressed the type-I interferon inducible lectin Siglec-1 (CD169), which promoted viral uptake. In the cervical biopsy of a viremic HIV-1+ patient, Siglec-1+ cells harbored HIV-1-containing compartments, demonstrating that in vivo, these cells trap viruses. Ex vivo, a type-I interferon antiviral environment enhanced viral capture and trans-infection via Siglec-1. Nonetheless, HIV-1 transfer via cervical DCs was effectively prevented with antibodies against Siglec-1. Our findings contribute to decipher how cervical DCs may boost HIV-1 replication and promote systemic viral spread from the cervical mucosa, and highlight the importance of including inhibitors against Siglec-1 in microbicidal strategies

    CD32 is expressed on cells with transcriptionally active HIV but does not enrich for HIV DNA in resting T cells

    Get PDF
    The persistence of HIV reservoirs, including latently infected, resting CD4+ T cells, is the major obstacle to cure HIV infection. CD32a expression was recently reported to mark CD4+ T cells harboring a replication-competent HIV reservoir during antiretroviral therapy (ART) suppression. We aimed to determine whether CD32 expression marks HIV latently or transcriptionally active infected CD4+ T cells. Using peripheral blood and lymphoid tissue of ART-treated HIV+ or SIV+ subjects, we found that most of the circulating memory CD32+ CD4+ T cells expressed markers of activation, including CD69, HLA-DR, CD25, CD38, and Ki67, and bore a TH2 phenotype as defined by CXCR3, CCR4, and CCR6. CD32 expression did not selectively enrich for HIV- or SIV-infected CD4+ T cells in peripheral blood or lymphoid tissue; isolated CD32+ resting CD4+ T cells accounted for less than 3% of the total HIV DNA in CD4+ T cells. Cell-associated HIV DNA and RNA loads in CD4+ T cells positively correlated with the frequency of CD32+ CD69+ CD4+ T cells but not with CD32 expression on resting CD4+ T cells. Using RNA fluorescence in situ hybridization, CD32 coexpression with HIV RNA or p24 was detected after in vitro HIV infection (peripheral blood mononuclear cell and tissue) and in vivo within lymph node tissue from HIV-infected individuals. Together, these results indicate that CD32 is not a marker of resting CD4+ T cells or of enriched HIV DNA–positive cells after ART; rather, CD32 is predominately expressed on a subset of activated CD4+ T cells enriched for transcriptionally active HIV after long-term ART

    Expression of CD20 after viral reactivation renders HIV-reservoir cells susceptible to Rituximab

    Get PDF
    Rituximab; Viral reactivation; CD20Rituximab; Reactivació viral; CD20Rituximab; Reactivación viral; CD20The identification of exclusive markers to target HIV-reservoir cells will represent a significant advance in the search for therapies to cure HIV. Here, we identify the B lymphocyte antigen CD20 as a marker for HIV-infected cells in vitro and in vivo. The CD20 molecule is dimly expressed in a subpopulation of CD4-positive (CD4+) T lymphocytes from blood, with high levels of cell activation and heterogeneous memory phenotypes. In lymph node samples from infected patients, CD20 is present in productively HIV-infected cells, and ex vivo viral infection selectively upregulates the expression of CD20 during early infection. In samples from patients on antiretroviral therapy (ART) this subpopulation is significantly enriched in HIV transcripts, and the anti-CD20 monoclonal antibody Rituximab induces cell killing, which reduces the pool of HIV-expressing cells when combined with latency reversal agents. We provide a tool for targeting this active HIV-reservoir after viral reactivation in patients while on ART.This study was supported by the American National Institutes of Health (grant R21AI118411 to M.B.), the Spanish Secretariat of Science and Innovation and FEDER funds (grant SAF2015-67334-R [MINECO/FEDER]), the Spanish "Ministerio de Economia y Competitividad, Instituto de Salud Carlos III" (ISCIII, PI17/01470), GeSIDA and the Spanish AIDS network Red Tematica Cooperativa de Investigacion en SIDA (RD16/0025/0007). M.B. is supported by the Miguel Servet program funded by the Spanish Health Institute Carlos III (CP17/00179). M.G. is supported by the "Pla estrategic de recerca i innovacio en salut" (PERIS), from the Catalan Government

    Antibody cooperative adsorption onto AuNPs and its exploitation to force natural killer cells to kill HIV-infected T cells

    Get PDF
    HIV represents a persistent infection which negatively alters the immune system. New tools to reinvigorate different immune cell populations to impact HIV are needed. Herein, a novel nanotool for the specific enhancement of the natural killer (NK) immune response towards HIV-infected T-cells has been developed. Bispecific Au nanoparticles (BiAb-AuNPs), dually conjugated with IgG anti-HIVgp120 and IgG anti-human CD16 antibodies, were generated by a new controlled, linker-free and cooperative conjugation method promoting the ordered distribution and segregation of antibodies in domains. The cooperatively-adsorbed antibodies fully retained the capabilities to recognize their cognate antigen and were able to significantly enhance cell-to-cell contact between HIV-expressing cells and NK cells. As a consequence, the BiAb-AuNPs triggered a potent cytotoxic response against HIV-infected cells in blood and human tonsil explants. Remarkably, the BiAb-AuNPs were able to significantly reduce latent HIV infection after viral reactivation in a primary cell model of HIV latency. This novel molecularly-targeted strategy using a bispecific nanotool to enhance the immune system represents a new approximation with potential applications beyond HIV.This study was supported by the Spanish Secretariat of Science and Innovation and FEDER funds (grants SAF2015-67334-R and RTI2018-101082-B-I00 [MINECO/FEDER]), American National Institutes of Health (grant R21AI118411 to M.B), an unrestricted research grant from Bristol-Myers Squibb S.A.U (PfC-2015-AI424-564) to M.B, the Spanish “Ministerio de Economía y Competitividad, Instituto de Salud Carlos III” (ISCIII, PI17/01470) to M.G and the Spanish “Ministerio de Economía y Competitividad, Instituto de Salud Carlos III” (ISCIII, PI14/01058) to J.G.P, a research grant from Gilead Sciences (GLD17-00204 and GLD19-00084) to M.B, GeSIDA and the Spanish AIDS network “Red Temática Cooperativa de Investigación en SIDA” (RD16/0025/0007). The Miguel Servet program funded by the Spanish Health Institute Carlos III (CP17/00179) to M.B and J.G.P (CPII15/00014). The “Pla estratègic de recerca i innovació en salut” (PERIS), from the Catalan Government to M.G. The Spanish Secretariat of Science and Innovation Ph.D. fellowship to A.A-G (BES-2016-076382), AGAUR-FI-B-00582 Ph.D. fellowship from the Catalan Government to O.BL, and PIF-UAB Ph.D. fellowship from Universitat Autònoma de Barcelona to R.SL.Peer reviewe

    Dendritic Cells From the Cervical Mucosa Capture and Transfer HIV-1 via Siglec-1

    Get PDF
    Antigen presenting cells from the cervical mucosa are thought to amplify incoming HIV-1 and spread infection systemically without being productively infected. Yet, the molecular mechanism at the cervical mucosa underlying this viral transmission pathway remains unknown. Here we identified a subset of HLA-DR+ CD14+ CD11c+ cervical DCs at the lamina propria of the ectocervix and the endocervix that expressed the type-I interferon inducible lectin Siglec-1 (CD169), which promoted viral uptake. In the cervical biopsy of a viremic HIV-1+ patient, Siglec-1+ cells harbored HIV-1-containing compartments, demonstrating that in vivo, these cells trap viruses. Ex vivo, a type-I interferon antiviral environment enhanced viral capture and trans-infection via Siglec-1. Nonetheless, HIV-1 transfer via cervical DCs was effectively prevented with antibodies against Siglec-1. Our findings contribute to decipher how cervical DCs may boost HIV-1 replication and promote systemic viral spread from the cervical mucosa, and highlight the importance of including inhibitors against Siglec-1 in microbicidal strategies

    Papel del citoesqueleto de actina en la regulación de la H+-ATPasa vacuolar de complejo de Golgi

    Get PDF
    La vía secretora se caracteriza por la acidificación progresiva de sus orgánulos, este gradiente es crucial para funciones tales como la modificación postraduccional de proteínas o el trafico de membranas. El principal responsable de generar y mantener este gradiente es la H+-ATPasa vacuolar (V-ATPase), que transporta protones desde el citosol hacía el interior del Golgi. Esta bomba está compuesta de dos dominios, el dominio V1 y el V0, a su vez ambos están formados por varias subunidades. Se ha descrito que las subunidades B y C del dominio V1 contienen dominios de unión a actina. Existen significantes similitudes entre los efectos subcelulares producidos por la despolimerización de actina y la inhibición farmacológica de la V-ATPasa: Alteración de transporte vesicular Golgi-Retículo endolplasmatico y Golgi-membrana plasmática, alcalinización del complejo de Golgi, dilatación de las cisternas de Golgi. Teniendo en cuenta que dos subunidades de la V-ATPasa tienen la capacidad de unirse a los microfilamentos de actina, nosotros hipotetizamos que estos podrían participar en la homeostasis del pH de Golgi a través de la regulación de la V-ATPasa, particularmente la actina podría estar manteniendo la asociación de los dominios V1 y V0. Generamos un constructo de la subunidad B conjugado con GFP (B2-GFP) que se incorporaba en el dominio V1. Observamos que este constructo se localizaba en los compartimentos distales del complejo de Golgi y que translocaba al citosol al despolimerizar la actina. Diferentes ensayos bioquímicos nos sirvieron para confirmar que la despolimerización de actina inducía la disociación de los dominios V1 y V0 de la V-ATPasa. Además, detectamos interacción entre la actina y las subunidades B y C. Finalmente, está descrito que la V-ATPasa se localiza en los dominios ricos en colesterol de la membrana plasmática y que el citoesqueleto de actina juega un papel importante en la organización de estos dominios, lo que observamos fue que la desorganización de los dominios ricos en colesterol inducía una subida del pH de Golgi. Con todo, concluimos que la actina regula el pH de Golgi a través del mantenimiento de la asociación de los dos dominios de la ATPasa gracias a su unión a las subunidades B y C además de su papel en el mantenimiento de los dominios ricos en colesterol.We previously reported that agents that depolymerize actin filaments promote the alkalization of the Golgi stack and the trans-Golgi network. Vacuolar-type H-translocating ATPase (V-ATPase) is responsible of proton translocation and acidification of Golgi lumen. V-ATPase is a multisubunit complex composed of two domains (V1 and V0). Moreover, two subunits of V1 domain contain actin binding sides, subunit B and C. In this work we hypothesize that actin filaments could have a role in the maintaining of V1 and V0 domain association. We have generated a GFPtagged subunit B2 construct that is incorporated into the V1 domain, this construct localizes at distal Golgi compartments and translocate to cytosol upon actin depolymerization. Several biochemical assays confirmed that microfilaments distruption induces dissociation of V1-V0 domains. Moreover, we detected interaction between subunits B-C and actin filaments. Finally, V-ATPase is localized in lipid raft domains of plasma membrane and actin filaments participate in organization of these domains. We observed that lipid raft disorganization promotes an increase of intra-Golgi pH. Overall, we conclude that actin regulates the Golgi pH homeostasis maintaining the coupling of V1-V0 domains of V-ATPase through the binding of microfilaments to subunits B and C and preserving the integrity of lipid raft

    Papel del citoesqueleto de actina en la regulación de la H+-ATPasa vacuolar de complejo de Golgi

    Get PDF
    [spa] La vía secretora se caracteriza por la acidificación progresiva de sus orgánulos, este gradiente es crucial para funciones tales como la modificación postraduccional de proteínas o el trafico de membranas. El principal responsable de generar y mantener este gradiente es la H+-ATPasa vacuolar (V-ATPase), que transporta protones desde el citosol hacía el interior del Golgi. Esta bomba está compuesta de dos dominios, el dominio V1 y el V0, a su vez ambos están formados por varias subunidades. Se ha descrito que las subunidades B y C del dominio V1 contienen dominios de unión a actina. Existen significantes similitudes entre los efectos subcelulares producidos por la despolimerización de actina y la inhibición farmacológica de la V-ATPasa: Alteración de transporte vesicular Golgi-Retículo endolplasmatico y Golgi-membrana plasmática, alcalinización del complejo de Golgi, dilatación de las cisternas de Golgi. Teniendo en cuenta que dos subunidades de la V-ATPasa tienen la capacidad de unirse a los microfilamentos de actina, nosotros hipotetizamos que estos podrían participar en la homeostasis del pH de Golgi a través de la regulación de la V-ATPasa, particularmente la actina podría estar manteniendo la asociación de los dominios V1 y V0. Generamos un constructo de la subunidad B conjugado con GFP (B2-GFP) que se incorporaba en el dominio V1. Observamos que este constructo se localizaba en los compartimentos distales del complejo de Golgi y que translocaba al citosol al despolimerizar la actina. Diferentes ensayos bioquímicos nos sirvieron para confirmar que la despolimerización de actina inducía la disociación de los dominios V1 y V0 de la V-ATPasa. Además, detectamos interacción entre la actina y las subunidades B y C. Finalmente, está descrito que la V-ATPasa se localiza en los dominios ricos en colesterol de la membrana plasmática y que el citoesqueleto de actina juega un papel importante en la organización de estos dominios, lo que observamos fue que la desorganización de los dominios ricos en colesterol inducía una subida del pH de Golgi. Con todo, concluimos que la actina regula el pH de Golgi a través del mantenimiento de la asociación de los dos dominios de la ATPasa gracias a su unión a las subunidades B y C además de su papel en el mantenimiento de los dominios ricos en colesterol[eng] We previously reported that agents that depolymerize actin filaments promote the alkalization of the Golgi stack and the trans-Golgi network. Vacuolar-type H-translocating ATPase (V-ATPase) is responsible of proton translocation and acidification of Golgi lumen. V-ATPase is a multisubunit complex composed of two domains (V1 and V0). Moreover, two subunits of V1 domain contain actin binding sides, subunit B and C. In this work we hypothesize that actin filaments could have a role in the maintaining of V1 and V0 domain association. We have generated a GFPtagged subunit B2 construct that is incorporated into the V1 domain, this construct localizes at distal Golgi compartments and translocate to cytosol upon actin depolymerization. Several biochemical assays confirmed that microfilaments distruption induces dissociation of V1-V0 domains. Moreover, we detected interaction between subunits B-C and actin filaments. Finally, V-ATPase is localized in lipid raft domains of plasma membrane and actin filaments participate in organization of these domains. We observed that lipid raft disorganization promotes an increase of intra-Golgi pH. Overall, we conclude that actin regulates the Golgi pH homeostasis maintaining the coupling of V1-V0 domains of V-ATPase through the binding of microfilaments to subunits B and C and preserving the integrity of lipid raft

    Cytoskeleton and Golgi-apparatus interactions: A two-way road of function and structure

    Get PDF
    The Golgi apparatus is the result of a complex and dynamic interaction between a large variety of molecules that determine its architecture, protein and lipid transports, and those that integrate signals from outside and inside the cell. The cytoskeleton facilitates the functional integration of all these processes. Association and coordination between microtubules and actin filaments, as well as their respective binding and regulatory proteins, are clearly necessary for Golgi structure and function. Protein sorting, membrane fission and fusion, and the motion of Golgi-derived transport carriers are all affected by both cytoskeleton elementsResearch in GE’s and RMR’s labs is supported by grants from the Ministerio de Economia y Competitividad (BFU2009-07186 and BFU2012-33932 to GE, and BFU2012-36717 and CSD2009- 00016 to RMR). RMR’s lab is also supported by the Consejo Superior de Investigaciones Científicas and the Junta de Andalucía (Spain)Peer Reviewe
    corecore