151 research outputs found

    Analysis of anti-RNA polymerase III antibody positive systemic sclerosis suggests altered GPATCH2L and CTNND2 expression in scleroderma renal crisis

    Get PDF
    OBJECTIVE: Scleroderma renal crisis (SRC) is a life-threatening complication of systemic sclerosis (SSc) strongly associated with anti RNA polymerase III antibody (ARA) autoantibodies. We explore genetic susceptibility and altered protein expression in renal biopsy specimens in ARA positive SRC. METHODS: ARA-positive patients (n=99) with at least 5 years' follow-up (49% with a history of SRC) were selected from a well-characterised SSc cohort (n=2254). Cases were genotyped using the Illumina Human Omni-express chip. Based on initial regression analysis, nine SNPs were chosen for validation in a separate cohort of 256 ARA+ patients (40 with SRC). Immunostaining of tissue sections from SRC or control kidney was used to quantify expression of candidate proteins based upon genetic analysis of the discovery cohort. RESULTS: Analysis of 641,489 SNPs suggested association of POU2F1 (rs2093658; 1.98x10-5), CTNND2 (rs1859082; p=7.14 x 10-5), HECW2 (rs16849716; p=1.2 x 10-4) and GPATCH2L (rs935332; p=4.92 x 10-5) with SRC. Furthermore, the validation cohort showed an association between rs935332 within the GPATCH2L region, with SRC (p=0.025). Immunostaining of renal biopsy sections showed increased tubular expression of GPATCH2L (p=0.026), and glomerular expression of CTNND2 (p=0.026) in SRC samples (n=8) compared with normal human kidney controls (n=8), despite absence of any genetic replication for the associated SNP. CONCLUSION: Increased expression of two candidate proteins GPATCH2L and CTNND2 in SRC compared with control kidney suggests a potential role in pathogenesis of SRC. For GPATCH2L this may reflect genetic susceptibility in ARA positive SSc based upon 2 independent cohorts

    The C-terminal region of Trypanosoma cruzi MASPs is antigenic and secreted via exovesicles.

    Get PDF
    Trypanosoma cruzi is the etiological agent of Chagas disease, a neglected and emerging tropical disease, endemic to South America and present in non-endemic regions due to human migration. The MASP multigene family is specific to T. cruzi, accounting for 6% of the parasite's genome and plays a key role in immune evasion. A common feature of MASPs is the presence of two conserved regions: an N-terminal region codifying for signal peptide and a C-terminal (C-term) region, which potentially acts as GPI-addition signal peptide. Our aim was the analysis of the presence of an immune response against the MASP C-term region. We found that this region is highly conserved, released via exovesicles (EVs) and has an associated immune response as revealed by epitope affinity mapping, IFA and inhibition of the complement lysis assays. We also demonstrate the presence of a fast IgM response in Balb/c mice infected with T. cruzi. Our results reveal the presence of non-canonical secreted peptides in EVs, which can subsequently be exposed to the immune system with a potential role in evading immune system targets in the parasite

    Crystal structure of the membrane attack complex assembly inhibitor BGA71 from the Lyme disease agent Borrelia bavariensis

    Get PDF
    Funding Information: This work was supported by the European Regional Development Fund (ERDF) grant Nr. 1.1.1.2/VIAA/1/16/144 “Structural and functional studies of Lyme disease agent Borrelia burgdorferi outer surface proteins to reveal the mechanisms of pathogenesis with the intention to create a new vaccine”. Diffraction data have been collected on BL14.1 at the BESSY II electron storage ring operated by the Helmholtz-Zentrum, Berlin. We would particularly like to acknowledge the help and support of Manfred S. Weiss and Christian Feiler during the experiment. Publisher Copyright: © 2018, The Author(s).Borrelia (B.) bavariensis, B. burgdorferi, B. afzelii, B. garinii, B. spielmanii, and B. mayonii are the causative agents in Lyme disease. Lyme disease spirochetes reside in infected Ixodes ticks and are transferred to mammalian hosts during tick feeding. Once transmitted, spirochetes must overcome the first line of defense of the innate immune system either by binding complement regulators or by terminating the formation of the membrane attack complex (MAC). In B. bavariensis, the proteins BGA66 and BGA71 inhibit complement activation by interacting with the late complement components C7, C8, and C9, as well as with the formed MAC. In this study, we have determined the crystal structure of the potent MAC inhibitor BGA71 at 2.9 Ǻ resolution. The structure revealed a cysteine cross-linked homodimer. Based on the crystal structure of BGA71 and the structure-based sequence alignment with CspA from B. burgdorferi, we have proposed a potential binding site for C7 and C9, both of which are constituents of the formed MAC. Our results shed light on the molecular mechanism of immune evasion developed by the human pathogenic Borrelia species to overcome innate immunity. These results will aid in the understanding of Lyme disease pathogenesis and pave the way for the development of new strategies to prevent Lyme disease.publishersversionPeer reviewe

    Deletion of the Chd6 exon 12 affects motor coordination

    Get PDF
    Members of the CHD protein family play key roles in gene regulation through ATP-dependent chromatin remodeling. This is facilitated by chromodomains that bind histone tails, and by the SWI2/SNF2-like ATPase/helicase domain that remodels chromatin by moving histones. Chd6 is ubiquitously expressed in both mouse and human, with the highest levels of expression in the brain. The Chd6 gene contains 37 exons, of which exons 12-19 encode the highly conserved ATPase domain. To determine the biological role of Chd6, we generated mouse lines with a deletion of exon 12. Chd6 without exon 12 is expressed at normal levels in mice, and Chd6 Exon 12 −/− mice are viable, fertile, and exhibit no obvious morphological or pathological phenotype. Chd6 Exon 12 −/− mice lack coordination as revealed by sensorimotor analysis. Further behavioral testing revealed that the coordination impairment was not due to muscle weakness or bradykinesia. Histological analysis of brain morphology revealed no differences between Chd6 Exon 12 −/− mice and wild-type (WT) controls. The location of CHD6 on human chromosome 20q12 is overlapped by the linkage map regions of several human ataxias, including autosomal recessive infantile cerebellar ataxia (SCAR6), a nonprogressive cerebrospinal ataxia. The genomic location, expression pattern, and ataxic phenotype of Chd6 Exon 12 −/− mice indicate that mutations within CHD6 may be responsible for one of these ataxias

    Persistent and polarised global actin flow is essential for directionality during cell migration

    Get PDF
    Cell migration is hypothesized to involve a cycle of behaviours beginning with leading edge extension. However, recent evidence suggests that the leading edge may be dispensable for migration, raising the question of what actually controls cell directionality. Here, we exploit the embryonic migration of Drosophila macrophages to bridge the different temporal scales of the behaviours controlling motility. This approach reveals that edge fluctuations during random motility are not persistent and are weakly correlated with motion. In contrast, flow of the actin network behind the leading edge is highly persistent. Quantification of actin flow structure during migration reveals a stable organization and asymmetry in the cell-wide flowfield that strongly correlates with cell directionality. This organization is regulated by a gradient of actin network compression and destruction, which is controlled by myosin contraction and cofilin-mediated disassembly. It is this stable actin-flow polarity, which integrates rapid fluctuations of the leading edge, that controls inherent cellular persistence

    Enhancement strategies for transdermal drug delivery systems: current trends and applications

    Get PDF

    The global burden of cancer attributable to risk factors, 2010-19: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    corecore