57 research outputs found

    Interaction of Kelvin waves and nonlocality of energy transfer in superfluids

    Get PDF
    We argue that the physics of interacting Kelvin Waves (KWs) is highly nontrivial and cannot be understood on the basis of pure dimensional reasoning. A consistent theory of KW turbulence in superfluids should be based upon explicit knowledge of their interactions. To achieve this, we present a detailed calculation and comprehensive analysis of the interaction coefficients for KW turbuelence, thereby, resolving previous mistakes stemming from unaccounted contributions. As a first application of this analysis, we derive a local nonlinear (partial differential) equation. This equation is much simpler for analysis and numerical simulations of KWs than the Biot-Savart equation, and in contrast to the completely integrable local induction approximation (in which the energy exchange between KWs is absent), describes the nonlinear dynamics of KWs. Second, we show that the previously suggested Kozik-Svistunov energy spectrum for KWs, which has often been used in the analysis of experimental and numerical data in superfluid turbulence, is irrelevant, because it is based upon an erroneous assumption of the locality of the energy transfer through scales. Moreover, we demonstrate the weak nonlocality of the inverse cascade spectrum with a constant particle-number flux and find resulting logarithmic corrections to this spectrum

    Position and Role of the BK Channel α Subunit S0 Helix Inferred from Disulfide Crosslinking

    Get PDF
    The position and role of the unique N-terminal transmembrane (TM) helix, S0, in large-conductance, voltage- and calcium-activated potassium (BK) channels are undetermined. From the extents of intra-subunit, endogenous disulfide bond formation between cysteines substituted for the residues just outside the membrane domain, we infer that the extracellular flank of S0 is surrounded on three sides by the extracellular flanks of TM helices S1 and S2 and the four-residue extracellular loop between S3 and S4. Eight different double cysteine–substituted alphas, each with one cysteine in the S0 flank and one in the S3–S4 loop, were at least 90% disulfide cross-linked. Two of these alphas formed channels in which 90% cross-linking had no effect on the V50 or on the activation and deactivation rate constants. This implies that the extracellular ends of S0, S3, and S4 are close in the resting state and move in concert during voltage sensor activation. The association of S0 with the gating charge bearing S3 and S4 could contribute to the considerably larger electrostatic energy required to activate the BK channel compared with typical voltage-gated potassium channels with six TM helices

    Improvement of firebrand tracking and detection software

    Get PDF
    Burning and glowing firebrands generated by wildland and urban fires may lead to the initiation of spot fnes and the ignition of structures. One of the ways to obtain this infonnation is to process tliennal video files. Earlier, a number of algorithms were developed for the analysis of the characteristics of fu'ebrands under field conditions. However, they had certain disadvantages. In this regard, this work is devoted to the development of new algorithms and their testing

    Soliton propagation through a disordered system:statistics of the transmission delay

    Get PDF
    We have studied the soliton propagation through a segment containing random pointlike scatterers. In the limit of small concentration of scatterers when the mean distance between the scatterers is larger than the soliton width, a method has been developed for obtaining the statistical characteristics of the soliton transmission through the segment. The method is applicable for any classical particle traversing through a disordered segment with the given velocity transformation after each act of scattering. In the case of weak scattering and relatively short disordered segment the transmission time delay of a fast soliton is mostly determined by the shifts of the soliton center after each act of scattering. For sufficiently long segments the main contribution to the delay is due to the shifts of the amplitude and velocity of a fast soliton after each scatterer. Corresponding crossover lengths for both cases of light and heavy solitons have been obtained. We have also calculated the exact probability density function of the soliton transmission time delay for a sufficiently long segment. In the case of weak identical scatterers the latter is a universal function which depends on a sole parameter—the mean number of scatterers in a segment

    Investigation of spaceborne trace gas products over St Petersburg and Yekaterinburg, Russia, by using COllaborative Column Carbon Observing Network (COCCON) observations

    Get PDF
    This work employs ground- and space-based observations, together with model data, to study columnar abundances of atmospheric trace gases (XH2_2O, XCO2_2, XCH4_4 and XCO) in two high-latitude Russian cities, St. Petersburg and Yekaterinburg. Two portable COllaborative Column Carbon Observing Network (COCCON) spectrometers were used for continuous measurements at these locations during 2019 and 2020. Additionally, a subset of data of special interest (a strong gradient in XCH4 and XCO was detected) collected in the framework of a mobile city campaign performed in 2019 using both instruments is investigated. All studied satellite products (TROPOMI, OCO-2, GOSAT, MUSICA IASI) show generally good agreement with COCCON observations. Satellite and ground-based observations at high latitudes are much sparser than at low or mid latitudes, which makes direct coincident comparisons between remote-sensing observations more difficult. Therefore, a method of scaling continuous Copernicus Atmosphere Monitoring Service (CAMS) model data to the ground-based observations is developed and used for creating virtual COCCON observations. These adjusted CAMS data are then used for satellite validation, showing good agreement in both Peterhof and Yekaterinburg. The gradients between the two study sites (ΔXgas) are similar between CAMS and CAMS-COCCON datasets, indicating that the model gradients are in agreement with the gradients observed by COCCON. This is further supported by a few simultaneous COCCON and satellite ΔXgas measurements, which also agree with the model gradient. With respect to the city campaign observations recorded in St Petersburg, the downwind COCCON station measured obvious enhancements for both XCH4_4 (10.6 ppb) and XCO (9.5 ppb), which is nicely reflected by TROPOMI observations, which detect city-scale gradients of the order 9.4 ppb for XCH4_4 and 12.5 ppb for XCO

    Location of modulatory β subunits in BK potassium channels

    Get PDF
    Large-conductance voltage- and calcium-activated potassium (BK) channels contain four pore-forming α subunits and four modulatory β subunits. From the extents of disulfide cross-linking in channels on the cell surface between cysteine (Cys) substituted for residues in the first turns in the membrane of the S0 transmembrane (TM) helix, unique to BK α, and of the voltage-sensing domain TM helices S1–S4, we infer that S0 is next to S3 and S4, but not to S1 and S2. Furthermore, of the two β1 TM helices, TM2 is next to S0, and TM1 is next to TM2. Coexpression of α with two substituted Cys’s, one in S0 and one in S2, and β1 also with two substituted Cys’s, one in TM1 and one in TM2, resulted in two αs cross-linked by one β. Thus, each β lies between and can interact with the voltage-sensing domains of two adjacent α subunits

    Occupational asthma follow-up — which markers are elevated in exhaled breath condensate and plasma?

    Full text link
    Objectives: To search for optimal markers in the exhaled breath condensate (EBC), plasma and urine that would reflect the activity/ severity of occupational asthma (OA) after the withdrawal from the exposure to the allergen. Material and Methods: Markers of oxidative stress: 8-iso-prostaglandin F2α (8-isoprostane, 8-ISO), malondialdehyde (MDA), 4-hydroxy-trans-2-nonenale (HNE), cysteinyl leukotrienes (LT) and LTB4 were determined using liquid chromatography and mass spectrometry in 43 subjects with immunological OA (49.3±11.8 years), removed from the exposure to the sensitizing agent 10.5±6.5 years ago; and in 20 healthy subjects (49.0±14.9 years). EBC was harvested both before and after the methacholine challenge test. In parallel, identical markers were collected in plasma and urine. The results were analyzed together with forced expiratory volume in one second (FEV1), blood eosinophils, immunoglobulin E (IgE) and eosinophilic cationic protein (ECP) and statistically evaluated (Spearman rank correlation rS, two- or one-sample t tests and alternatively Kruskal Wallis or pair Wilcoxon tests). Results: Several parameters of lung functions were lower in the patients (FEV1% predicted, MEF25% and MEF50%, Rtot%, p < 0.001). Shorter time interval since the removal from the allergen exposure correlated with higher ECP (rS = 0.375) and lower FEV1%, MEF25% and MEF50% after methacholine challenge (rS = -0.404, -0.425 and -0.532, respectively). In the patients, IgE (p < 0.001) and ECP (p = 0.009) was increased compared to controls. In EBC, 8-ISO and cysteinyl LTs were elevated in the asthmatics initially and after the challenge. Initial 8-ISO in plasma correlated negatively with FEV1 (rS = -0.409) and with methacholine PD20 (rS = -0.474). 8-ISO in plasma after the challenge correlated with IgE (rS = 0.396). Conclusions: The improvement in OA is very slow and objective impairments persist years after removal from the exposure. Cysteinyl LTs and 8-ISO in EBC and 8-ISO in plasma might enrich the spectrum of useful objective tests for the follow-up of OA
    corecore