248 research outputs found

    Distribution Patterns of Grasshoppers and Their Kin in the Boreal Zone

    Get PDF
    The distribution patterns of Orthoptera are described for the boreal zone. The boreal fauna of Eurasia includes more than 81 species. Many of them are widely distributed. The monotypic genus Paracyphoderris Storozhenko and at least 13 species are endemics or subendemics. About 50 species are known from boreal North America. Four endemic species are distributed very locally. Relationships between the faunas of the Eurasian and North American parts of the boreal zone are relatively weak. The boreal assemblages are usually characterized by the low levels of species diversity and abundance. Grasshoppers and their relatives occupy almost exclusively open habitats, such as different types of meadows, mountain steppes and tundras, clearings, openings, bogs, and stony flood plains. The local endemics and subendemics are found only in some habitats of the eastern part of Eurasia and the north-western part of North America. Retrospective and prospective of the boreal fauna of Orthoptera are also discussed

    Locusts and grasshoppers: behavior, ecology, and biogeography

    Get PDF
    Presentación del número especial de la revista sobre langostas y saltamontes.Facultad de Ciencias Naturales y Muse

    Ultra-Sensitive Hot-Electron Nanobolometers for Terahertz Astrophysics

    Full text link
    The background-limited spectral imaging of the early Universe requires spaceborne terahertz (THz) detectors with the sensitivity 2-3 orders of magnitude better than that of the state-of-the-art bolometers. To realize this sensitivity without sacrificing operating speed, novel detector designs should combine an ultrasmall heat capacity of a sensor with its unique thermal isolation. Quantum effects in thermal transport at nanoscale put strong limitations on the further improvement of traditional membrane-supported bolometers. Here we demonstrate an innovative approach by developing superconducting hot-electron nanobolometers in which the electrons are cooled only due to a weak electron-phonon interaction. At T<0.1K, the electron-phonon thermal conductance in these nanodevices becomes less than one percent of the quantum of thermal conductance. The hot-electron nanobolometers, sufficiently sensitive for registering single THz photons, are very promising for submillimeter astronomy and other applications based on quantum calorimetry and photon counting.Comment: 19 pages, 3 color figure

    PSL(nn)PSL(n|n) Sigma Model as a Conformal Field Theory

    Full text link
    We discuss the sigma model on the PSL(nn)PSL(n|n) supergroup manifold. We demonstrate that this theory is exactly conformal. The chiral algebra of this model is given by some extension of the Virasoro algebra, similar to the WW algebra of Zamolodchikov. We also show that all group invariant correlation functions are coupling constant independent and can be computed in the free theory. The non invariant correlation functions are highly nontrivial and coupling dependent. At the end we compare two and three-point correlation functions of the PSL(1,12)PSL(1,1|2) sigma model with the correlation functions in the boundary theory of AdS3×S3AdS_3 \times S^3 and find a qualitative agreement.Comment: 34 pages, 5 figure

    On sets of eigenvalues of matrices with prescribed row sums and prescribed graph

    Get PDF
    Motivated by a work of Boros, Brualdi, Crama and Hoffman, we consider the sets of (i) possible Perron roots of nonnegative matrices with prescribed row sums and associated graph, and (ii) possible eigenvalues of complex matrices with prescribed associated graph and row sums of the moduli of their entries. To characterize the set of Perron roots or possible eigenvalues of matrices in these classes we introduce, following an idea of Al'pin, Elsner and van den Driessche, the concept of row uniform matrix, which is a nonnegative matrix where all nonzero entries in every row are equal. Furthermore, we completely characterize the sets of possible Perron roots of the class of nonnegative matrices and the set of possible eigenvalues of the class of complex matrices under study. Extending known results to the reducible case, we derive new sharp bounds on the set of eigenvalues or Perron roots of matrices when the only information available is the graph of the matrix and the row sums of the moduli of its entries. In the last section of the paper a new constructive proof of the Camion-Hoffman theorem is given.Comment: 22 page

    Long-Term Profile Variability in Active Galactic Nuclei with Double-Peaked Balmer Emission Lines

    Get PDF
    An increasing number of Active Galactic Nuclei (AGNs) exhibit broad, double-peaked Balmer emission lines,which represent some of the best evidence for the existence of relatively large-scale accretion disks in AGNs. A set of 20 double-peaked emitters have been monitored for nearly a decade in order to observe long-term variations in the profiles of the double-peaked Balmer lines. Variations generally occur on timescales of years, and are attributed to physical changes in the accretion disk. Here we characterize the variability of a subset of seven double-peaked emitters in a model independent way. We find that variability is caused primarily by the presence of one or more discrete "lumps" of excess emission; over a timescale of a year (and sometimes less) these lumps change in amplitude and shape, but the projected velocity of these lumps changes over much longer timescales (several years). We also find that all of the objects exhibit red peaks that are stronger than the blue peak at some epochs and/or blueshifts in the overall profile, contrary to the expectations for a simple, circular accretion disk model, thus emphasizing the need for asymmetries in the accretion disk. Comparisons with two simple models, an elliptical accretion disk and a circular disk with a spiral arm, are unable to reproduce all aspects of the observed variability, although both account for some of the observed behaviors. Three of the seven objects have robust estimates of the black hole masses. For these objects the observed variability timescale is consistent with the expected precession timescale for a spiral arm, but incompatible with that of an elliptical accretion disk. We suggest that with the simple modification of allowing the spiral arm to be fragmented, many of the observed variability patterns could be reproduced.Comment: 74 pages, 4 tables, 35 figure

    Weak localization effect on thermomagnetic phenomena

    Full text link
    The quantum transport equation (QTE) is extended to study weak localization (WL) effects on galvanomagnetic and thermomagnetic phenomena. QTE has many advantages over the linear response method (LRM): (i) particle-hole asymmetry which is necessary for the Hall effect is taken into account by the nonequilibrium distribution function, while LRM requires expansion near the Fermi surface, (ii) when calculating response to the temperature gradient, the problem of WL correction to the heat current operator is avoided, (iii) magnetic field is directly introduced to QTE, while the LRM deals with the vector potential and and special attention should be paid to maintain gauge invariance, e.g. when calculating the Nernst effect the heat current operator should be modified to include the external magnetic field. We reproduce in a very compact form known results for the conductivity, the Hall and the thermoelectric effects and then we study our main problem, WL correction to the Nernst coefficient (transverse thermopower).Comment: 20 pages 2 figure

    Locusts and grasshoppers: behavior, ecology, and biogeography

    Get PDF
    Presentación del número especial de la revista sobre langostas y saltamontes.Facultad de Ciencias Naturales y Muse
    corecore