86 research outputs found

    Molecular rationale for antibody-mediated targeting of the hantavirus fusion glycoprotein

    Get PDF
    Rissanen, Ilona Stass, Robert Krumm, Stefanie A Seow, Jeffrey Hulswit, Ruben Jg Paesen, Guido C Hepojoki, Jussi Vapalahti, Olli Lundkvist, Ake Reynard, Olivier Volchkov, Viktor Doores, Katie J Huiskonen, Juha T Bowden, Thomas A eng MR/L009528/1/Medical Research Council/United Kingdom MR/S007555/1/Medical Research Council/United Kingdom MR/N002091/1/Medical Research Council/United Kingdom MR/K024426/1/Medical Research Council/United Kingdom 309605/Academy of Finland 649053/H2020 European Research Council 203141/Z/16Z/Wellcome Trust/United Kingdom 060208/Z/00/Z/Wellcome Trust/United Kingdom 093305/Z/10/Z/Wellcome Trust/United Kingdom England Elife. 2020 Dec 22;9. pii: 58242. doi: 10.7554/eLife.58242.The intricate lattice of Gn and Gc glycoprotein spike complexes on the hantavirus envelope facilitates host-cell entry and is the primary target of the neutralizing antibody-mediated immune response. Through study of a neutralizing monoclonal antibody termed mAb P-4G2, which neutralizes the zoonotic pathogen Puumala virus (PUUV), we provide a molecular-level basis for antibody-mediated targeting of the hantaviral glycoprotein lattice. Crystallographic analysis demonstrates that P-4G2 binds to a multi-domain site on PUUV Gc and may preclude fusogenic rearrangements of the glycoprotein that are required for host-cell entry. Furthermore, cryo-electron microscopy of PUUV-like particles in the presence of P-4G2 reveals a lattice-independent configuration of the Gc, demonstrating that P-4G2 perturbs the (Gn-Gc)4 lattice. This work provides a structure-based blueprint for rationalizing antibody-mediated targeting of hantaviruses.Peer reviewe

    Neutralization potency of monoclonal antibodies recognizing dominant and subdominant epitopes on SARS-CoV-2 Spike is impacted by the B.1.1.7 variant

    Get PDF
    Interaction of the SARS-CoV-2 Spike receptor binding domain (RBD) with the receptor ACE2 on host cells is essential for viral entry. RBD is the dominant target for neutralizing antibodies, and several neutralizing epitopes on RBD have been molecularly characterized. Analysis of circulating SARS-CoV-2 variants has revealed mutations arising in the RBD, N-terminal domain (NTD) and S2 subunits of Spike. To understand how these mutations affect Spike antigenicity, we isolated and characterized >100 monoclonal antibodies targeting epitopes on RBD, NTD, and S2 from SARS-CoV-2-infected individuals. Approximately 45% showed neutralizing activity, of which ∼20% were NTD specific. NTD-specific antibodies formed two distinct groups: the first was highly potent against infectious virus, whereas the second was less potent and displayed glycan-dependant neutralization activity. Mutations present in B.1.1.7 Spike frequently conferred neutralization resistance to NTD-specific antibodies. This work demonstrates that neutralizing antibodies targeting subdominant epitopes should be considered when investigating antigenic drift in emerging variants

    Antibody levels following vaccination against SARS-CoV-2: associations with post-vaccination infection and risk factors

    Get PDF
    SARS-CoV-2 antibody levels can be used to assess humoral immune responses following SARS-CoV-2 infection or vaccination, and may predict risk of future infection. From cross-sectional antibody testing of 9,361 individuals from TwinsUK and ALSPAC UK population-based longitudinal studies (jointly in April-May 2021, and TwinsUK only in November 2021-January 2022), we tested associations between antibody levels following vaccination and: (1) SARS-CoV-2 infection following vaccination(s); (2) health, socio-demographic, SARS-CoV-2 infection and SARS-CoV-2 vaccination variables. Within TwinsUK, single-vaccinated individuals with the lowest 20% of anti-Spike antibody levels at initial testing had 3-fold greater odds of SARS-CoV-2 infection over the next six to nine months, compared to the top 20%. In TwinsUK and ALSPAC, individuals identified as at increased risk of COVID-19 complication through the UK "Shielded Patient List" had consistently greater odds (2 to 4-fold) of having antibody levels in the lowest 10%. Third vaccination increased absolute antibody levels for almost all individuals, and reduced relative disparities compared with earlier vaccinations. These findings quantify the association between antibody level and risk of subsequent infection, and support a policy of triple vaccination for the generation of protective antibodies

    ACE2 expression in adipose tissue is associated with cardio-metabolic risk factors and cell type composition-implications for COVID-19

    Get PDF
    Background COVID-19 severity varies widely. Although some demographic and cardio-metabolic factors, including age and obesity, are associated with increasing risk of severe illness, the underlying mechanism(s) are uncertain. Subjects/methods In a meta-analysis of three independent studies of 1471 participants in total, we investigated phenotypic and genetic factors associated with subcutaneous adipose tissue expression of Angiotensin I Converting Enzyme 2 (ACE2), measured by RNA-Seq, which acts as a receptor for SARS-CoV-2 cellular entry. Results Lower adipose tissue ACE2 expression was associated with multiple adverse cardio-metabolic health indices, including type 2 diabetes (T2D) (P = 9.14 x 10(-6)), obesity status (P = 4.81 x 10(-5)), higher serum fasting insulin (P = 5.32 x 10(-4)), BMI (P = 3.94 x 10(-4)), and lower serum HDL levels (P = 1.92 x 10(-7)). ACE2 expression was also associated with estimated proportions of cell types in adipose tissue: lower expression was associated with a lower proportion of microvascular endothelial cells (P = 4.25 x 10(-4)) and higher proportion of macrophages (P = 2.74 x 10(-5)). Despite an estimated heritability of 32%, we did not identify any proximal or distal expression quantitative trait loci (eQTLs) associated with adipose tissue ACE2 expression. Conclusions Our results demonstrate that individuals with cardio-metabolic features known to increase risk of severe COVID-19 have lower background ACE2 levels in this highly relevant tissue. Reduced adipose tissue ACE2 expression may contribute to the pathophysiology of cardio-metabolic diseases, as well as the associated increased risk of severe COVID-19.Peer reviewe

    Monitoring quality of care in hepatocellular carcinoma: A modified delphi consensus

    Get PDF
    Although there are several established international guidelines on the management of hepatocellular carcinoma (HCC), there is limited information detailing specific indicators of good quality care. The aim of this study was to develop a core set of quality indicators (QIs) to underpin the management of HCC. We undertook a modified, two-round, Delphi consensus study comprising a working group and experts involved in the management of HCC as well as consumer representatives. QIs were derived from an extensive review of the literature. The role of the participants was to identify the most important and measurable QIs for inclusion in an HCC clinical quality registry. From an initial 94 QIs, 40 were proposed to the participants. Of these, 23 QIs ultimately met the inclusion criteria and were included in the final set. This included (a) nine related to the initial diagnosis and staging, including timing to diagnosis, required baseline clinical and laboratory assessments, prior surveillance for HCC, diagnostic imaging and pathology, tumor staging, and multidisciplinary care; (b) thirteen related to treatment and management, including role of antiviral therapy, timing to treatment, localized ablation and locoregional therapy, surgery, transplantation, systemic therapy, method of response assessment, and supportive care; and (c) one outcome assessment related to surgical mortality. Conclusion: We identified a core set of nationally agreed measurable QIs for the diagnosis, staging, and management of HCC. The adherence to these best practice QIs may lead to system-level improvement in quality of care and, ultimately, improvement in patient outcomes, including survival

    Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans

    Get PDF
    Antibody responses to SARS-CoV-2 can be detected in most infected individuals 10–15 d after the onset of COVID-19 symptoms. However, due to the recent emergence of SARS-CoV-2 in the human population, it is not known how long antibody responses will be maintained or whether they will provide protection from reinfection. Using sequential serum samples collected up to 94 d post onset of symptoms (POS) from 65 individuals with real-time quantitative PCR-confirmed SARS-CoV-2 infection, we show seroconversion (immunoglobulin (Ig)M, IgA, IgG) in >95% of cases and neutralizing antibody responses when sampled beyond 8 d POS. We show that the kinetics of the neutralizing antibody response is typical of an acute viral infection, with declining neutralizing antibody titres observed after an initial peak, and that the magnitude of this peak is dependent on disease severity. Although some individuals with high peak infective dose (ID50 > 10,000) maintained neutralizing antibody titres >1,000 at >60 d POS, some with lower peak ID50 had neutralizing antibody titres approaching baseline within the follow-up period. A similar decline in neutralizing antibody titres was observed in a cohort of 31 seropositive healthcare workers. The present study has important implications when considering widespread serological testing and antibody protection against reinfection with SARS-CoV-2, and may suggest that vaccine boosters are required to provide long-lasting protection
    • …
    corecore