50 research outputs found

    Melatonin mediated high-temperature tolerance at seedling stage in green gram (Vigna radiata L.)

    Get PDF
    Global warming is predicted to have a generally negative effect on food grain production. The emergence of seedlings, blooming, pod-filling stages and yield of the mung bean are affected by high-temperature stress. Melatonin is a multifunctional signaling molecule with antioxidant properties that plays a vital role in plant stress defense mechanism. With this knowledge, the experiment was conducted to identify the optimum melatonin concentration to mitigate the adverse effects of high temperature in green gram var CO 8 with a completely randomized design (CRD). The treatments consisted of soaking seeds with different melatonin concentrations, viz., 20, 40, 60, 80 and 100 μM. Seeds were sown in a pertidish and allowed to germinate. After 5 days, the seedlings were exposed to two different high-temperature stress following the temperature induction response (TIR) protocol in the growth chamber viz., Ambient + 2°C (40°C) and Ambient + 4°C (42°C). After stress period, the seedlings were allowed to recover at room temperature for 2 days. At the end of the recovery period, observations on temperature tolerance-related traits viz., survival percentage, per cent reduction of shoot and root growth, cell viability, mortality per cent, malondialdehyde content, superoxide dismutase and catalase activity of green gram seedlings were assessed. Seeds pre-treated with melatonin of 100 and 80 µM exhibited higher survival percentage, shoot and root growth, cell viability and antioxidant enzyme activity (like superoxide dismutase and catalase) with reduced mortality per cent and malondialdehyde content under high-temperature stress at both 40°C and 42°C. The results revealed that seeds treated with different melatonin concentrations significantly improved green gram germination and seedling health.               

    Exogenous melatonin improves seed germination and seedling growth in greengram under drought stress

    Get PDF
    Drought stress diminishes seedling germination and vigor by reducing water uptake, inhibiting plant growth and development. Most of the pulse growing areas are under rainfed ecosystems, which significantly reduces crop yield. Melatonin, a growth-regulating compound, is widely used to mitigate the negative effects of abiotic stresses in pulses. With this background, a laboratory experiment was conducted to standardize the optimum melatonin concentration for seed treatment and foliar application in greengram, to minimize the ill effects of drought stress. The experiment was arranged in a completely randomized design (CRD) with three replications for each treatment. The treatments consisted of soaking seeds with different melatonin concentrations, viz., 20, 40, 60, 80 and 100 μM. Seeds were sown in a perti dishes and the drought stress was imposed using poly ethylene glycol 6000 (PEG 6000) @ - 0.4 MPa, and plates were maintained at room temperature (24-30 °C). After the seedlings emerged, various seedling growth parameters like germination percentage, shoot length, root length, vigor index, promptness index, germination stress tolerance index, fresh and dry weight of the seedlings, plant height stress index and root length stress index were recorded. The experimental results showed that drought stress significantly reduced germination percentage and other growth-related parameters in greengram seedlings compared to the melatonin treatments. Among the melatonin treatments, seeds treated with @ 100 μM concentration recorded the highest germination percentage (99.67 %), promptness index (98.80), vigour index (1631.68), shoot and root length (8.9 cm and 7.5 cm), fresh and dry weight of the seedlings (3.249 and 0.147 mg seedling-1) under PEG induced drought stress condition

    An optimized design modelling of PV integrated SEPIC-based four-switch inverter for sensorless PMBLDC motor control

    Get PDF
    The design of PV-based high gain SEPIC converter integrated with four-switch strategy, which has been used to achieve sensorless speed control of Permanent magnet Brushless DC motor (PMBLDC) is analysed in this work. Hence SEPIC converter coupled with Fuzzy Logic, MPPT Algorithm is employed to retain voltage. SEPIC converter is chosen as it has a continuous current operation with high gain; Fuzzy MPPT algorithm is used as it provides accurate results faster while the classical MPPT techniques provide the results with fluctuations in attaining the maximum power. Regarding the sensorless control of PMBLDC motor, the conventional six-switch strategy is replaced by four-switch strategy and the sensors are replaced by back EMF method. Four-switch strategy has the capability of reducing the losses, size, cost and complexity of control. For achieving the nominal speed, a closed-loop control is implemented with PI controller, which is tuned by GWO technique. The proposed methodology is more efficient as the motor speed remains unchanged even under the full load condition. The end result of traditional PI algorithm and PI algorithm, which have been tuned by GWO algorithm, is compared and simulated through MATLAB. This is also implemented and validated in hardware by FPGA Spartan 6E controller

    A Internet of Things Improvng Deep Neural Network Based Particle Swarm Optimization Computation Prediction Approach for Healthcare System

    Get PDF
    Internet of Things (IoT) systems tend to generate with energy and good data to process and responding. In internet of things devices, the most important challenge when sending data to the cloud the level of energy consumption. This paper introduces an energy-efficient abstraction method data collection in medical with IoT-based for the exchange. Initially, the data required for IoT devices is collected from the person. First, Adaptive Optimized Sensor-Lamella Zive Welch (AOSLZW) is a pressure sensing prior to the data transmission technique used in the process. A cloud server is used data reducing  the amount of data sent from IoT devices to the AOSLZW strategy. Finally, a deep neural network (DNN) based on Particle Swarm Optimization (PSO) known as DNN-PSO algorithm is used for data sensed result model make decisions based as a predictive to make it. The results are studied under distinct scenarios of the presented of the performance for AOSLZW-DNN-PSO method, for that simation are studied under different sections. This current pattern of simalation results indicates that the AOSLZW-DNN-PSO method is effective under several aspects

    Premature Centromere Division and Spontaneous Abortion

    Get PDF
    Premature Centromere Division (PCD) was observed in the chromosomes of metaphase spreads in a patient with the history of recurrent abortions. Short term leukocyte cultures were set up with blood sample from the woman with a history of recurrent abortions for the past four consequent years. 25 % of the metaphase spreads screened displayed premature centromere division of the chromosomes in each of the cells. This abnormal behavior of the centromeres may predispose the individual to cell division errors due to chromosome instability and the consequences of which may be a spontaneous abortion

    Role of Melatonin in Directing Plant Physiology

    Get PDF
    Melatonin (MT), a naturally occurring compound, is found in various species worldwide. In 1958, it was first identified in the pineal gland of dairy cows. MT is an "old friend" but a "new compound" for plant biology. It brings experts and research minds from the broad field of plant sciences due to its considerable influence on plant systems. The MT production process in plants and animals is distinct, where it has been expressed explicitly in chloroplasts and mitochondria in plants. Tryptophan acts as the precursor for the formation of phyto-melatonin, along with intermediates including tryptamine, serotonin, N-acetyl serotonin, and 5-methoxy tryptamine. It plays a vital role in growth phases such as the seed germination and seedling growth of crop plants. MT significantly impacts the gas exchange, thereby improving physio-chemical functions in plant systems. During stress, the excessive generation and accumulation of reactive oxygen species (ROS) causes protein oxidation, lipid peroxidation, nucleic acid damage, and enzyme inhibition. Because it directly acts as an antioxidant compound, it awakens the plant antioxidant defense system during stress and reduces the production of ROS, which results in decreasing cellular oxidative damage. MT can enhance plant growth and development in response to various abiotic stresses such as drought, salinity, high temperature, flooding, and heavy metals by regulating the antioxidant mechanism of plants. However, these reactions differ significantly from crop to crop and are based on the level and kind of stress. The role of MT in the physiological functions of plants towards plant growth and development, tolerance towards various abiotic stresses, and approaches for enhancing the endogenous MT in plant systems are broadly reviewed and it is suggested that MT is a steering compound in directing major physiological functions of plants under the changing climate in future

    Melatonin imparts tolerance to combined drought and high-temperature stresses in tomato through osmotic adjustment and ABA accumulation

    Get PDF
    In recent years, environmental stresses viz., drought and high-temperature negatively impacts the tomato growth, yield and quality. The effects of combined drought and high-temperature (HT) stresses during the flowering stage were investigated. The main objective was to assess the effects of foliar spray of melatonin under both individual and combined drought and HT stresses at the flowering stage. Drought stress was imposed by withholding irrigation, whereas HT stress was imposed by exposing the plants to an ambient temperature (AT)+5°C temperature. The drought+HT stress was imposed by exposing the plants to drought first, followed by exposure to AT+5°C temperature. The duration of individual and combined drought or HT stress was 10 days. The results showed that drought+HT stress had a significant negative effect compared with individual drought or HT stress alone. However, spraying 100 µM melatonin on the plants challenged with individual or combined drought and HT stress showed a significant increase in total chlorophyll content [drought: 16%, HT: 14%, and drought+HT: 11%], Fv/Fm [drought: 16%, HT: 15%, and drought+HT: 13%], relative water content [drought: 10%, HT: 2%, and drought+HT: 8%], and proline [drought: 26%, HT: 17%, and drought+HT: 14%] compared with their respective stress control. Additionally, melatonin positively influenced the stomatal and trichome characteristics compared with stress control plants. Also, the osmotic adjustment was found to be significantly increased in the melatonin-sprayed plants, which, in turn, resulted in an increased number of fruits, fruit set percentage, and fruit yield. Moreover, melatonin spray also enhanced the quality of fruits through increased lycopene content, carotenoid content, titratable acidity, and ascorbic acid content, compared with the stress control. Overall, this study highlights the usefulness of melatonin in effectively mitigating the negative effects of drought, HT, and drought+HT stress, thus leading to an increased drought and HT stress tolerance in tomato

    Calcium-Rich Pigeonpea Seed Coat: A Potential Byproduct for Food and Pharmaceutical Industries

    Get PDF
    Pigeonpea is a protein-rich legume which is consumed worldwide in a variety of forms (whole seed, dhal, and as a green vegetable). In India, pigeonpea is milled to yield dhal (cotyledon) and this process generates 25–35% waste byproducts. The hull (seed coat) which accounts for 10% of the byproduct is disposed of either as waste or low-cost cattle feed. To recycle the waste byproducts into the food value chain, this study was conducted with the objectives: (i) to estimate nutrient accumulation in the major seed fractions (cotyledon and seed coat), (ii) to estimate the percentage of nutrient contribution by major seed fractions, (iii) to assess the percentage of nutrient loss due to dehulling, and (iv) to determine the scope of seed coat in nutritional value addition. For this, a subset of 60 diverse pigeonpea accessions selected from 600 pigeonpea accessions raised during the 2019 and 2020 rainy seasons at ICRISAT, Patancheru, India, was subjected to a cotyledon and seed coat nutrient analysis. The three-way analysis of variance revealed the significant influence of cropping years, seed fractions, genotypes, and their interactions on nutrient accumulation. The nutrients, namely protein (32.28 ± 2.29%), P (476.51 ± 39.05 mg/100 g), K (1557.73 ± 66.82 mg/100 g), Fe (4.42 ± 0.41 mg/100 g), Zn (2.25 ± 0.21 mg/100 g), and Cu (0.95 ± 0.07 mg/100 g) were enriched in cotyledon. Mn was equally enriched in both the cotyledon and seed coat (1.02 ± 0.12 mg/100 g and 0.97 ± 0.34 mg/100 g, respectively). The seed coat had a high concentration of Ca (652.02 ± 114.82 mg/100 g), and Mg (249.19 ± 34.12 mg/100 g) with wide variability for Fe (2.74–5.61 mg/100 g), Zn (0.88–3.95 mg/100 g), Cu (0.38–1.44 mg/100 g), and Mn (0.58–2.18 mg/100 g). It is noteworthy that the protein and P contents in the cotyledon were 7 and 18 times higher than that in the seed coat, respectively, and the Ca content in the seed coat was 12 times higher than that in the cotyledon. A correlation study revealed that for overall nutrient improvement in dhal, selection for a small seed size was desirable. On an average, the percentage of nutrient contribution by major seed fractions revealed that the cotyledon portion contributed around 95% protein and P; 90% K and Zn; 85% Fe, Cu, and Mn; and 75% Mg, while the seed coat portion contributed nearly 65% Ca to the whole grain. The findings of high Fe and protein concentrations in the cotyledon and high Ca accumulation in the seed coat can serve as a new guide for improved technological fractionation of these components to serve as a novel functional food ingredient and as a dietary supplement that can address malnutrition

    Effectiveness of a national quality improvement programme to improve survival after emergency abdominal surgery (EPOCH): a stepped-wedge cluster-randomised trial

    Get PDF
    Background: Emergency abdominal surgery is associated with poor patient outcomes. We studied the effectiveness of a national quality improvement (QI) programme to implement a care pathway to improve survival for these patients. Methods: We did a stepped-wedge cluster-randomised trial of patients aged 40 years or older undergoing emergency open major abdominal surgery. Eligible UK National Health Service (NHS) hospitals (those that had an emergency general surgical service, a substantial volume of emergency abdominal surgery cases, and contributed data to the National Emergency Laparotomy Audit) were organised into 15 geographical clusters and commenced the QI programme in a random order, based on a computer-generated random sequence, over an 85-week period with one geographical cluster commencing the intervention every 5 weeks from the second to the 16th time period. Patients were masked to the study group, but it was not possible to mask hospital staff or investigators. The primary outcome measure was mortality within 90 days of surgery. Analyses were done on an intention-to-treat basis. This study is registered with the ISRCTN registry, number ISRCTN80682973. Findings: Treatment took place between March 3, 2014, and Oct 19, 2015. 22 754 patients were assessed for elegibility. Of 15 873 eligible patients from 93 NHS hospitals, primary outcome data were analysed for 8482 patients in the usual care group and 7374 in the QI group. Eight patients in the usual care group and nine patients in the QI group were not included in the analysis because of missing primary outcome data. The primary outcome of 90-day mortality occurred in 1210 (16%) patients in the QI group compared with 1393 (16%) patients in the usual care group (HR 1·11, 0·96–1·28). Interpretation: No survival benefit was observed from this QI programme to implement a care pathway for patients undergoing emergency abdominal surgery. Future QI programmes should ensure that teams have both the time and resources needed to improve patient care. Funding: National Institute for Health Research Health Services and Delivery Research Programme

    Effectiveness of a national quality improvement programme to improve survival after emergency abdominal surgery (EPOCH): a stepped-wedge cluster-randomised trial

    Get PDF
    BACKGROUND: Emergency abdominal surgery is associated with poor patient outcomes. We studied the effectiveness of a national quality improvement (QI) programme to implement a care pathway to improve survival for these patients. METHODS: We did a stepped-wedge cluster-randomised trial of patients aged 40 years or older undergoing emergency open major abdominal surgery. Eligible UK National Health Service (NHS) hospitals (those that had an emergency general surgical service, a substantial volume of emergency abdominal surgery cases, and contributed data to the National Emergency Laparotomy Audit) were organised into 15 geographical clusters and commenced the QI programme in a random order, based on a computer-generated random sequence, over an 85-week period with one geographical cluster commencing the intervention every 5 weeks from the second to the 16th time period. Patients were masked to the study group, but it was not possible to mask hospital staff or investigators. The primary outcome measure was mortality within 90 days of surgery. Analyses were done on an intention-to-treat basis. This study is registered with the ISRCTN registry, number ISRCTN80682973. FINDINGS: Treatment took place between March 3, 2014, and Oct 19, 2015. 22 754 patients were assessed for elegibility. Of 15 873 eligible patients from 93 NHS hospitals, primary outcome data were analysed for 8482 patients in the usual care group and 7374 in the QI group. Eight patients in the usual care group and nine patients in the QI group were not included in the analysis because of missing primary outcome data. The primary outcome of 90-day mortality occurred in 1210 (16%) patients in the QI group compared with 1393 (16%) patients in the usual care group (HR 1·11, 0·96-1·28). INTERPRETATION: No survival benefit was observed from this QI programme to implement a care pathway for patients undergoing emergency abdominal surgery. Future QI programmes should ensure that teams have both the time and resources needed to improve patient care. FUNDING: National Institute for Health Research Health Services and Delivery Research Programme
    corecore