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Abstract: Melatonin (MT), a naturally occurring compound, is found in various species worldwide.
In 1958, it was first identified in the pineal gland of dairy cows. MT is an “old friend” but a “new
compound” for plant biology. It brings experts and research minds from the broad field of plant
sciences due to its considerable influence on plant systems. The MT production process in plants and
animals is distinct, where it has been expressed explicitly in chloroplasts and mitochondria in plants.
Tryptophan acts as the precursor for the formation of phyto-melatonin, along with intermediates
including tryptamine, serotonin, N-acetyl serotonin, and 5-methoxy tryptamine. It plays a vital role
in growth phases such as the seed germination and seedling growth of crop plants. MT significantly
impacts the gas exchange, thereby improving physio-chemical functions in plant systems. During
stress, the excessive generation and accumulation of reactive oxygen species (ROS) causes protein
oxidation, lipid peroxidation, nucleic acid damage, and enzyme inhibition. Because it directly acts as
an antioxidant compound, it awakens the plant antioxidant defense system during stress and reduces
the production of ROS, which results in decreasing cellular oxidative damage. MT can enhance
plant growth and development in response to various abiotic stresses such as drought, salinity,
high temperature, flooding, and heavy metals by regulating the antioxidant mechanism of plants.
However, these reactions differ significantly from crop to crop and are based on the level and kind of
stress. The role of MT in the physiological functions of plants towards plant growth and development,
tolerance towards various abiotic stresses, and approaches for enhancing the endogenous MT in
plant systems are broadly reviewed and it is suggested that MT is a steering compound in directing
major physiological functions of plants under the changing climate in future.

Keywords: melatonin; indolamine; abiotic stress; antioxidant; plant growth

1. Introduction

MT (N-acetyl-5-methoxy-tryptamine) is a naturally occurring compound in various
species. In 1958, it was identified in the pineal gland of dairy cows [1]. MT is an “old
friend” but a “new compound” for plant biology. MT was first identified in higher plants
as reported by Dubbels et al. [2], Van Tassel et al. [3], and Hattori et al. [4]. MT has drawn
a lot of study interest since it was discovered and found in plants in 1995. It has been
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detected and measured in more than 140 plant species in recent years [5,6]. It is a versa-
tile compound that is extensively distributed in a variety of plant organs, including the
roots, stems, leaves, fruits, and seeds. Different plant tissues contain significantly varied
amounts of MT. Blask and his co-workers proposed the term “phytomelatonin” in 2004,
referring to its plant-based source [7]. Tryptophan, a type of indoleamine, is the starting
molecule for MT like that of auxin and ought to be involved in the control of growth and
development. It has physiological impacts on plants, which include stimulating seedling
growth, formation of primary roots, lateral and adventitious roots, and modifying the
branching and growth cycles of leaves and stems, and also resists against leaf senescence by
enhancing photosynthesis, stimulating flowering and seed development [8]. MT also takes
part in several cellular processes in the name of antioxidant and free radical scavenging [9].
Additionally, MT has been linked to improved seed sprouting, maturation, photosynthesis,
biomass production, circadian rhythm, redox network, membrane integrity, root devel-
opment, leaf senescence, osmoregulation, and resistance to environmental stresses like
salt, drought, heat, oxidative stress, and heavy metals. MT levels in plants are noticeably
higher when exposed to a various stressors, including salt, drought, temperatures, UV
radiation, metal pollution, and pathogenic infections, implicating that MT plays a role in
plant stress tolerance [10]. It functions as an antioxidant and contributes to controlling ROS
and nitrogen species (RNS) in plants because of its pleiotropic qualities. It is more efficient
than glutathione and vitamin E at regulating a number of antioxidant enzymes, including
glutathione reductase, catalase (CAT), peroxidase (POX), and superoxide dismutase (SOD).
It boosts the mitochondria’s electron transport chain’s effectiveness, thereby reducing elec-
tron leakage. Because MT functions as a signaling molecule connected to defense systems
against diverse biotic and abiotic threats, it is regarded as a master plant regulator that
supports plant development and growth [11]. The signaling molecules in MT biosynthesis
in plants under stress are yet to be clearly identified [12]. Employing MT as a bio-stimulator
for the sustained production of crops without damaging the surrounding environment
could, therefore, be of utmost relevance.

MT was found to increase the secondary metabolites like fatty acid and alkaloid
content in different crops like coffee and soybean under various abiotic stresses [13], but
the mechanism behind this has to be investigated. MT helps in stomatal closure at night to
avoid water loss in arid regions by regulating ROS signaling through its receptor PMTR1
and maintaining homeostasis [14]. External application of a low concentration of MT was
found to enhance seed germination, lateral root growth, and photosynthesis under various
abiotic stresses [13]. Application of MT increased salt stress tolerance in rice, melon, and
grapevine [15,16]; drought stress tolerance in corn and apple [17,18]; heat stress tolerance
in Arabidopsis [19]; cold stress tolerance in corn and cucumber [20,21]; and heavy metal
stress tolerance in wheat, tomato, Arabidopsis, and rice [22–25].

The study of MT action in plants is quickly expanding due to its phenotypic hormone
effect on plant growth systems. It examines the crucial function of MT in regulating plant
growth and development as well as its potential physiological mechanism for reducing
abiotic stressors on plants. This review will contribute to a detailed knowledge of the
current state of plant MT research and help us to understand MT’s role in directing plant
physiology more meticulously, and we may speculate that plant MT research will go on a
new path in the future.

2. Biosynthesis of Melatonin in Plants

The MT production process in plants and animals is distinct. Many elements, including
light, have a vital role in controlling its production in plants. MT is specifically expressed in
chloroplasts and mitochondria in plants. Tryptophan acts as the precursor for the formation
of phyto-melatonin, along with intermediates including tryptamine, serotonin, N-acetyl
serotonin, and 5-methoxy tryptamine (Figure 1). According to the report from Tan and
Reiter [26], the intermediates of MT production are found in several sub-cellular compart-
ments including the cytoplasm, mitochondria, endoplasmic reticulum and chloroplasts.



Agronomy 2023, 13, 2405 3 of 25

Tryptophan decarboxylase (TDC) first decarboxylates tryptophan to produce tryptamine in
the cytoplasm, tryptamine-5-hydroxylase (T5H), and then performs an enzymatic hydrox-
ylation to produce serotonin in the endoplasmic reticulum. N-acetyltransferase (SNAT)
and acetyl serotonin methyl transferase (ASMT) convert serotonin through acetylation and
methylation reactions into N-acetyl serotonin in chloroplasts and 5-methoxytryptamine in
the cytoplasm. N-acetyl serotonin produced in chloroplast reacts with the ASMT in the cy-
toplasm and transforms into MT; meanwhile, 5-methoxytryptamine produced in cytoplasm
moves into the chloroplast and reacts with SNAT to synthesize MT [27]. Alternatively,
an enzyme known as caffeic acid O-methyltransferase (COMT), which regulates several
substrates, can also convert N-acetyl serotonin into MT in a different route that has been
studied through plants. COMT can also transform serotonin into 5-methoxytryptamine
and produce MT through SNAT catalyzation [28].
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Figure 1. MT biosynthesis pathway in plant system. TDC: Tryptophan decarboxylase; T5H:
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transferase; COMT: caffeic acid O-methyltransferase.

3. Melatonin’s Role in Plant Growth and Physiology
3.1. Germination

In the life cycle of higher plants, seed germination is a complicated process governed
by several coordinated metabolic, cellular, and molecular activities. It is also a crucial time
for the establishment of crop populations. Germination involves a number of metabolic
and physical processes. This stage, which is similarly susceptible to stress and critical for
determining whether plants will survive under adverse conditions, is greatly influenced
by the external environment. According to Li et al. [29], MT functions as a signaling
molecule and positively controls the germination process in Cucumis melo by upregulating
the genes for gibberellin (GA) biosynthesis (CsGA20ox and CsGA3ox) and abscisic acid
(ABA) catabolism (CsCYP707A1 and CsCYP707A2). A similar finding was also reported by
Chen et al. [30] in cotton. Abiotic stress, such as stress like elevated temperature, lowers the
cotton seeds’ ability to germinate, which leads to poor germination and crop stand which
lends support to the findings of Snider et al. [31]. According to Lei et al. [32], application of
MT improved seed germination and reserve mobilization in wheat under chromium stress.
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Raza et al. [33] revealed that exogenous MT promotes the activity of several antioxidant
enzymes, which decreased the formation of ROS and enhanced the viability of seedlings
under elevated temperatures. Application of MT in Lupinus albus potentially stimulated
the vegetative growth in cotyledons and etiolated seedlings [34]. Similarly, in red cabbage
(Brassica oleracea rubrum), exogenous MT promotes seed germination [35]. Previous studies
have proven that pretreatment with MT can improve the seed germination of the various
crops like green gram [36], rice [37], tomato [38], maize [39], Medicago sativa [40], Triticale
hexaploide [41], and cotton [42]; also, it acts as a signaling molecule for the upregulation
of genes involved in the biosynthesis of gibberellin (GA) that might be responsible for
seed germination in cucumber [43]. Based on the result derived from Castañares and
Bouzo [16], the germination percentage of the melon decreased drastically with increased
Ec (electrical conductivity) of the water solution. However, the 6 h seed pretreatment
with MT significantly increased the germination percentage. Findings of Rajora et al. [44]
also revealed that under varied abiotic stress situations, priming seeds with MT enhances
and speeds up the seed germination process. To speed up the germination process, seed
priming changes the physiology of the embryo and activates hydrolytic enzymes [45].

3.2. Shoot and Root Growth

Due to the buildup of ABA, which further inactivates cell-wall-loosening enzymes
under water stress in wheat, shifting the apoplastic pH from acidic to alkaline restricts the
development of the plant’s shoots and roots [46]. The process of cell elongation involves an
indoleamine molecule [47]. Pretreatment with MT results in a drop in intercellular pH to
an acidic state and activates the enzymes responsible for loosening cell walls, which in turn
triggers cell elongation like IAA [48]. As a consequence, seed priming with MT enhanced
seed germination and seedling development through synthesizing stress-related proteins
and activating signaling pathways in rice under stressful conditions [49]. Ahmad et al. [50]
stated that MT along with the application of nitrogen significantly improved the shoot
fresh and dry biomass in maize seedlings. Exogenous MT enhances the accumulation of
soluble sugars and the protein level, which regulates osmotic adjustment under stressful
conditions in cotton [51]. The application of MT stimulates the production of endogenous
growth-inducing substances like metabolites, phytohormones, and increasing ROS and
RNS scavenging systems in plants [52] which might lead to the production of higher shoots
and denser roots. The fact that MT also causes the auxin-related genes to become active
suggests that the auxin signal pathway is necessary for MT-mediated root development [53].
Ahmad et al. [54] described that increased shoot and root length, leaf area, and biomass
accumulation after MT treatment improve the maize plant’s ability to withstand salt stress.
Additionally, MT treatment boosted the amount of other endogenous growth induce
factors as IAA, which led to the development of a denser root system [55]. A similar
effect was found in other crops like rice [37], wheat [56], tomato [57], tobacco [58], and
soybean [59] revealing that the growth and establishment of seedlings from seeds that had
been pretreated with MT was favorable. Sultana and Barthakur [60] explored that seed
priming with MT elicits positive effects on wheat root traits such as length, volume, and
surface area of the seedling.

3.3. Gas Exchange

Photosynthesis is the most important physiological function found in all green plants
that is severely affected by abiotic stresses [61]. Abdulbaki et al. [62] explained that abiotic
stresses reduce the production of assimilatory powers (ATP and NADPH) and Rubisco
activity by destroying the chloroplast grana structure and photosynthetic electron transport
system. The reduced diffusion and concentration of intercellular CO2 in the carboxylation
site of rubisco also decreases the photosynthetic rate under stress [63]. Chlorophyll is a key
photosynthetic pigment found in all higher plants and plays a vital function in absorption
of light energy. Fu et al. [64] reported that the metabolite concentrations of chlorophyll
a, chlorophyll b, and carotenoids were decreased under heat stress in wheat. The en-
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hanced activity of chlorophyll-degrading enzymes like chlorophyllase, pheophytinase, and
chlorophyll-degrading peroxidase catalyze the breakdown of chlorophyll molecules in
response to stress [65]. Wang et al. [66] suggested that a direct link was observed between
MT and the concentration of photosynthetic pigment in soybean. MT reduces the rate of
chlorophyll degradation by lowering the transcript levels of pheophorbide-a-oxygenase
(PAO) which is involved in chlorophyll metabolism [67]. The expressions of genes such as
Chlase, PPH, and Chl-PRX associated with degradation of chlorophyll biosynthesis were
downregulated by MT in Agrostis stolonifera [68]. Shi et al. [69] stated that MT increases
the Bermuda grass photosynthetic pathway by protecting the chlorophyll molecule from
degradation and enhances the expression of photosynthetic proteins like LHCa and PsaG
during oxidative stress. MT also protects the chloroplast ultrastructure from oxidative
damage and recovers photosynthetic accessory pigments like carotenoids, chlorophyll b,
xanthophyll, and anthocyanin from stress [70]. Liu et al. [67] suggested that application
of MT decreases the expression level and its relative mRNA abundance of genes involved
in senescence (SAG12) and the programmed cell death process. MT slows down the ag-
ing process of leaves by enhancing the ROS scavenging mechanism, which stabilizes the
chloroplast structure and protects photosynthesis-related genes from deterioration [71] in
the tomato plant.

Stomata play a vital role in the regulation of photosynthesis, transpiration rate, and
water status of the plant [72]. MT regulates the opening of stomata through upregulation
of the ABA catabolism process and simultaneously downregulates ABA anabolism that
results in reduced accumulation of the endogenous ABA level. The decreased ABA level
by MT reduces the production of H2O2 in guard cells of stomata that makes the stomata
remain open and maintains the water status of the plant [73]. Leaf water status and leaf
temperature are positively regulated by transpiration rate. The increased transpiration
rate by MT enables the plant to maintain a lower leaf temperature, thereby improving
photosynthetic efficiency [74]. The positive effect of MT on transpiration rate and stomatal
conductance through the regulation of ABA level was also noticed in tomato [75], rice [76],
and pepper [77].

Farooq et al. [78] observed the positive effect of MT on the photochemical efficiency
(Fv/Fm) of the photosystem (PSII) in Brassica napus. Raza et al. [33] opined that stress
induces excessive production of ROS which results in the peroxidation of lipid membranes
and denaturation of proteins essential for chlorophyll biosynthesis that subsequently
decreases the photosynthetic efficiency in plants. MT enhances the quantum yield of PSII
by preventing photooxidative damage and assisting in the repair of photo-oxidatively
damaged D1 protein [79]. The increase in the efficiency of PSII (Fv/Fm) is mainly attributed
to the better functioning of PS II that has a higher number of reaction centers and improved
photosynthetic electron transport rate (ETR) [57].

3.4. Antioxidant or ROS Scavenging

The crops are more vulnerable to the several abiotic stresses with changing climate
during their growth phases. During stress conditions, plants convert 1–2% of the consumed
oxygen into reactive oxygen species, specifically, hydroxyl radical (•OH), hydrogen per-
oxide (H2O2), superoxide radical (O2

•−), and singlet oxygen (1O2). Stress enhances the
production of ROS that results in cellular oxidative damage. The excessive generation and
accumulation of ROS causes protein oxidation, lipid peroxidation, nucleic acid damage,
enzyme inhibition, early leaf senescence, and necrosis [80]. Plants produced various en-
zymatic, such as CAT, POX, APX, SOD, GPX, and GR, and non-enzymatic antioxidants,
like vitamins, carotenoids, stilbenes, and flavonoids, to capture the excess ROS in the plant
system and thereby protect the plants from oxidative stress. Currently, MT is an inevitable
compound present in the plant system and functions as a powerful antioxidant using both
direct and indirect mechanisms during abiotic stress conditions. MT scavenges free radicals
produced under stressful circumstances by increasing the endogenous antioxidants such
as ascorbic acid and glutathione [58]. The expression level of genes related to antioxidant
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enzyme activity like SOD, CAT, APX, and GPX was also increased by MT in response to
stress [81]. Kaur et al. [82] noticed that the Asada-Halliwell pathway, a crucial antioxidant
enzymatic cycle, was regulated by MT in order to enhance the ROS scavenging mechanisms
in stressed plants. Zhang et al. [83] suggested that MT stimulates the activity of H2O2
scavenging enzymes such as CAT, POD, and APX as well as ABA-degrading enzymes.
Furthermore, MT controls the AsA-GSH cycle, which is essential for ROS detoxification,
and enzymes like APX, MDHAR, DHAR, and GR were involved in the regulation of this
cycle [84]. Rehman et al. [85] explained that MT effectively scavenges ROS by increasing
the activity of the antioxidant enzyme glutathione peroxidase (GPX), which scavenges lipid
peroxides, hydroperoxides, and H2O2 under stress.

MT possesses amphiphilic characteristics that enable it to diffuse and distribute readily
across lipid membranes and the cytoplasm. The MT-bound hydrophilic side of the lipid
bilayer prevented lipid peroxidation by directly neutralizing the damaging chemicals
produced under stressful circumstances [86]. Lei et al. [87] opined that application of MT
to rapeseed minimizes the free radical formation and generation of ROS like H2O2 and
O2

−. The integrity of the plant cell membrane was improved by MT through the increased
activity of antioxidant enzymes like SOD, CAT, APX, and GPX [88]. MT reduces the effects
of oxidative stress by directly scavenging ROS through enhanced antioxidant enzyme
activity that ultimately reduces the MDA level in plants [89]. The increased antioxidant
enzyme activity and defense system by the exogenous application of MT under stress
conditions were also reported in wheat [90], tomato [91], cabbage [92], and rice [93]. The
generation of superoxide anion radicals is inhibited by MT via limiting the level of O2
flux under stress conditions when ADP levels are higher [94]. MT functions through
several methods as a mediator in many antioxidant pathways, such as the glutathione
ascorbate cycle, peroxidases, superoxide dismutase, and CAT under abiotic stress responses
in plants [95]. Talaat and Todorova et al. [96] also observed that the plants treated with MT
have increased ascorbate (AsA) and reduced glutathione (GSH) content, thereby reducing
the formation of H2O2 in plant cells. The increased non-enzymatic antioxidants like AsA
and GSH production are thought to be crucial for maintaining the ROS balance in plants
under stress. The positive role of MT on antioxidant enzyme activity was also reported by
Ye et al. [97] and Yan et al. [98] in barley and tomato.

4. Melatonin’s Role in Secondary Metabolites’ Expression

Abiotic stress downregulates the accumulation and concentration of plant metabolites,
whereas foliar application of MT positively upregulates the metabolites in the plant system.
At the cellular level, the concentration of several metabolites was altered by the exoge-
nous application of MT that was both directly or indirectly involved in plant tolerance
against drought stress in green gram, and the expressed metabolites were involved in the
intermediates of different metabolic pathways [99] (Figure 2). Xie et al. [100] reported
that the metabolites involved in the carbon metabolic pathway which includes glycolysis,
the oxidative pentose phosphate pathway and the tricarboxylic acid (TCA) cycle, were
upregulated by MT and showed a direct link between the carbon metabolic pathway
and MT in rice. Proline is one of the compatible solutes that accumulates in plant cells
in response to cadmium stress and increases the osmotic adjustment in order to retain
membrane integrity. In addition, the experiment found that exogenous application of
MT could significantly improve the metabolite group such as amino acids, sugar, and
sugar alcohols in tomato plant [91] and the compounds were assigned as intermediates
for plant metabolic pathways. Sheikhalipour et al. [101] showed that increased proline
concentration by MT also increases the stabilization of protein structures from denaturation
under moisture stress. Saddhe et al. [102] described that metabolites like proline and some
sugars such as glucose, fructose, sucrose, and trehalose were involved in the regulation of
osmotic adjustment under osmotic stress. MT increased the transcription level of various
sucrose-related enzymes like sucrose synthase, invertase, phosphatase, and fructokinase
and sucrose transporters in plant cells [103]. Yang et al. [104] explained the importance of
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MT between MdFRK2 and plant growth and MdFRK2 was found to be involved in the MT-
mediated accumulation of sugars like glucose, fructose, and sucrose in apple leaves. Jiang
et al. [105] found that high levels of metabolite concentration related to amino acids were
observed in MT treatment that results in enhanced physiological activities. The primary
function of glycolysis in the plant metabolic pathway is to supply energy in the form of ATP
and synthesize precursors essential for metabolism of fatty acids and amino acids [106].
Zhang et al. [107] stated that MT improves the metabolites engaged in carbohydrate and
amino acid metabolism and upregulates the glycolysis pathway in plants. MT enhances
plants’ tolerance to abiotic stresses through detoxification of ROS and osmotic adjustment
by synthesizing and accumulating secondary metabolites such as phenols, ascorbic acid,
and carbohydrates such as mannitol and ribose which play a major role in antioxidants and
osmolytes [108]. Foliar application of MT during drought stress expressed multifaceted
metabolites in Carya cathayensis which facilitates the upregulation of biosynthetic pathways
such as ABC transporters, porphyrin and chlorophyll metabolism, carotenoid biosynthesis,
carbon fixation and metabolism, sugar metabolism, and the phenylpropanoid pathway
in MT-treated plants [109]. For plants to fight against various environmental stresses, MT
regulates the stress signaling pathways through the accumulation of various flavonoids,
polyamines, and phenolic compounds in the plant system [110].
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stress. In the figure, the blue color highlighted box shows the metabolite expressions in both control
and MT-treated plants, the green color highlighted box shows the metabolite expression in MT-treated
plants alone, and the red color highlighted box shows the metabolite expression in control plants [99].

The GC-MS metabolomic study of the investigation showed that more than 50 com-
pounds were expressed and regulated by MT treatment in cassava plants [111]. These
compounds include amino acids (glycine, arginine, and thymine), fatty acids (oleic acid,
palmitic acid, streaic acid, linoleic acid, linolenic acid, and traumatic acid), antioxidants
(coumarins, phenols, and flavonoids), aromatic compounds (piperidine), and digitoxin.
Salt-stressed plants without MT treatment also expressed some compounds in minimum
amounts such as gamolenic acid, gelsimine, burnamicine, oxalic acid, and melibiose,
whereas traumatic acid, glycine, arginine, oleic acid, arginine, thymine, and phenols were
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some compounds found only in MT-treated plants and not in salt-stressed plants. MT appli-
cation was responsible for the synthesis of spermidine, spermine, and putrescine bioactive
compounds through activating precursors like arginine and ornithine [89]. The various
abiotic stress studies found that MT endorses the secondary metabolites like spermidine,
spermine, and putrescine in Cucumis sativus; flavones, flavanone, luteolin, and isoflavone
in pigeon pea [95,112]; and rosmarinic acid, luteolin flavone, and apigenin flavone in
Dracocephalum kotschyi Boiss [113].

5. Melatonin’s Role in Crop Yield and Quality

MT enhances the growth-related attributes as well as the photosynthetic pigments
and thus maximizes the photoassimilate production and translocation efficiency from
source to sink tissues and finally the yield [114]. Khan et al. [115] mentioned that in tomato
plant, the number of fruits per plant, fruit yield, and quality characters (ascorbic acid,
lycopene content, and β carotene) were increased in MT-treated plants. Hassan et al. [116]
reported that exogenous MT significantly improves the weight of the bunch, hands per
bunches, total weight of hands, and finger length in banana. In addition, Hu et al. [84] also
stated that increased photosynthetic carbon metabolism and partitioning efficiency in the
MT-treated plants enhanced the boll formation and seed yield in cotton. MT regulates a
variety of physiological and biochemical processes in plants, thereby improving the net
photosynthetic rate and productivity of the crop [117]. Medina-Santamarina et al. [118]
explained that MT showed a positive effect on the improvement of sink strength that
ultimately results in improved berry size, weight, and yield of pomegranate. MT enhances
the seed filling rate, seed weight, and final yield of maize crop by regulating the hormonal
balance [50]. Jiang et al. [105] also observed that MT delays the early leaf senescence
process and improves the photosynthetic efficiency by minimizing the production of ROS,
which shows a direct impact on the improvement of quality and yield of rice grains. Liu
et al. [67] reported that the number of fruits per plant, per fruit weight, and yield per plant
were significantly improved in MT-treated cucumber plants. Application of MT showed a
positive correlation between photosynthetic rate, antioxidant enzymes, and seed yield in
soybean [119] and maize [120].

Mohamed et al. [121] observed an improvement in oil quality of rapeseed cultivars
due to the priming of Brassica napus L. seeds with MT, which increased the concentration
of unsaturated fatty acids like linolenic and oleic acids with reduced glucosinolates and
saturated fatty acids such as palmitic and arachidic acids under salinity stress. The applica-
tion of MT improved yield-related characteristics such as seed yield per plant, 1000 seed
weight, seed oil content, and seed yield in mustard [122]. Wang et al. [123] investigated
the impact of MT on yield traits of soybean and reported an increased number of pods,
seeds per pod, and grain yield under stress. In cucumber, the number of fruits, fruit weight,
and total yield of the plant were increased under osmotic stress in response to MT treat-
ment [124]. Pretreatment of MT improved the number of pods, seed number per pod, total
seed weight, and seed yield of soybean under salt stress [125]. Debnath et al. (2018) found
that exogenous application of MT improved the quality and yield of tomato fruits exposed
to abiotic stress. Liu et al. [47] noticed that the priming of seeds with MT improved the fruit
quality of tomato with the increased accumulation of lycopene, ascorbic acid, and mineral
elements in fruits.

Ibrahim et al. [126] observed an enhanced fruit quality in tomato due to MT application
which improved the antioxidant enzymes, lycopene, ascorbic acid, and total soluble solids.
Gurjar et al. [127] found that exogenous MT increased the shelf life of fruits and vegetables.
Medina-Santamarina et al. [118] described that the quality parameters of pomegranate fruits
like fruit size, color, total acidity, total soluble solids, fruit number per tree, and fruit yield
were improved by the application of MT. Nasser et al. [128] observed that the increase in
transcriptome alterations during the ripening process in grape berries enhanced the quality
of berries due to MT treatment. Under drought stress, foliar application of MT enhanced the
yield and quality of Moringa oleifera L. in terms of amino acid composition, glutamic acid,
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and nutrition such as nitrogen, phosphorus, potassium, calcium, and magnesium [129]. In
flax, total phenolic content, TSS, proline, and free amino acid contents of the seeds were
increased by exogenous MT treatment [130]. Farouk and Al-Amri [131] reported that the
application of MT in rosemary plants improved the essential oil content and yield under
stress conditions. Foliar spray of MT in medicinal lemon verbena shrub (Lippia citriodora)
enhanced the yield and essential oil content by 52% and 32%, respectively, under stress
conditions [132].

6. Melatonin’s Role in Abiotic Stress Mitigation

Plants experience many adverse situations throughout their lifespan. In order to
survive and reproduce successfully in adverse conditions such as drought, salinity, high
temperature, flooding, and heavy metal stress, plants have evolved a variety of response
mechanisms. MT is a universal compound participating in the nullification of the various
abiotic stress responses as a pleiotropic signaling molecule. Furthermore, it is a proficient
scavenger of RNS as well as ROS. Numerous research studies have been carried out
to investigate the activities of MT in plants since its discovery, indicating its protective
properties against abiotic stressors (Table 1).

Drought and high temperature stress reduce the permeability of water in the plants [133].
Stomata play a vital role in regulation of photosynthesis, transpiration rate, and plant
water status in response to abiotic stresses [134]. Rao et al. [135] opined that ABA acts
as a key mediator for the closure of stomata under stress conditions, which ultimately
affects a cascade of physiological and molecular processes. Wang et al. [136] explained
that exogenous MT ameliorates the oxidative stress and improves transpiration rate and
stomatal conductance in sweet corn. The increase in transpiration rate and stomatal
conductance might be due to the upregulation of the ABA catabolism process and the
simultaneous downregulation of ABA anabolism that results in reduced accumulation of
the endogenous ABA level; this fact was already reported by Hu et al. [137]. The decreased
ABA level reduces the production of H2O2 in guard cells of stomata that makes the stomata
remain open and maintains the water status of the plant under stress [29]. This might be
the reason for the increased transpiration rate and stomatal conductance in green gram
under water deficit and high temperature stress conditions. Jiang et al. [138] reported that
MT improves the stomatal conductance by regulating the ROS-mediated stomatal closure
that results in a higher transpiration rate in response to stress. Leaf water status and leaf
temperature are positively regulated by transpiration rate. The increased transpiration
rate by MT enables the plant to maintain lower leaf temperatures, thereby improving
photosynthetic efficiency [139]. Supriya et al. [140] found that an increased stomatal
conductance in MT-treated plants regulates the canopy temperature by enhancing the
water loss which ultimately results in lower water use efficiency under stress. At the single-
leaf level, the water use efficiency is governed by stomatal conductance and transpiration
rate [136]. The response of water use efficiency is closely linked with physiological processes
by regulating the concentration of CO2 and H2O in plant cells [27]. MT maintains better
water use efficiency under stress through the control of stomatal movements; therefore, it
improves the net photosynthetic rate as reported by Li et al. [141]. The positive effects of
MT on transpiration rate and stomatal conductance through regulation of the ABA level
were also noticed in tomato [142], rice [143], and barley [144].

6.1. Drought

Plants grown in water-stressed environments confront numerous biochemical and
molecular challenges, resulting in reduced plant development [145]. Drought stress reduces
photosynthesis by interfering with the mechanism of light harvesting and utilization,
significantly altering the metabolism of photosynthetic pigments, resulting in a decrease in
RuBisCo function and disruption of the photosynthetic apparatus [146] in finger millet [36].
MT helps plants to restore the photosynthetic efficiency by protecting the system from
the harmful impacts of drought [147]. It reduces chlorophyll degradation during drought
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conditions and enhances photosynthesis, transpiration, and stomatal conductivity [148].
MT increases the photosynthetic rate by improving the photochemical efficiency (Fv/Fm)
of photosystem II (PSII) and the rate of electron transport (ETR) [149]. After MT treatment,
leaves have a higher relative water content, which favors the protection of chloroplast
structures in maize [150]. It also helps to maintain cell turgor, which increases the capacity of
stomatal openings and conductance [147]. This enhanced stomatal conductance promotes
the passage of water and CO2, which in turn promotes photosynthesis in MT-treated
plants [151].

Furthermore, it has been shown that MT upregulates the transcript levels of genes
involved in ABA breakdown (MdCYP707A1 and MdCYP707A1) while it downregulates
MdNCED3, a crucial gene in the ABA biosynthesis pathway. This cellular reaction was aided
by an antioxidative mechanism and efficient H2O2 scavenging. Both these strategies are
thought to work synergistically to improve stomatal function [152]. MT boosts the capacity
of plants to scavenge ROS, protecting them from the damaging effects of drought-induced
oxidative stress. This enhanced ROS scavenging is brought on by the MT-stimulated
antioxidative defense system in plants developing under drought [153]. MT regulates
the drought-induced synthesis of superoxide anions in plant cells, either by increasing
scavenging or by limiting the creation of superoxide anions [154]. MT also improves H2O2
scavenging efficiency in plants growing in drought conditions [18]. This is followed by the
increased detoxification of damaging hydroxyl radicals that contribute to oxidative stress
induction [155]. MT also affects the ascorbate-glutathione cycle and causes ROS, such as
H2O2, to be scavenged directly [156].

MT-mediated efficient ROS scavenging in drought-stressed plants protects plant cell
walls. This is substantiated by lower MDA levels and less electrolyte leakage in MT-treated
plants under water-stress circumstances (Figure 3). MT stimulates the activity of ABA-
degrading enzymes as well as H2O2 scavenging enzymes such as CAT, APX, and POD in
drought-stressed crops [18]. MT boosts cuticular wax formation and enhances deposition
on the leaf’s surface, resulting in little water loss. This increased production is attributed to
increased transcript levels of genes that encode enzymes implicated in wax biosynthetic
pathways, like KCS1 (ketoacyl-CoA synthase 1) and LTP1 (lipid transfer protein 1) [157].
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6.2. Salinity

According to Kesawat et al. [159], plants under salt stress are more likely to produce
too many ROS, which can lead to membrane lipid or protein peroxidation and the death of
normal plant cells. When salt concentrations are excessive, plant roots experience osmotic
stress and have lower water potential. Additionally, the absorption of nutrients and water
is impacted, which hinders plant growth and development and causes wilting and plant
mortality [160]. Under stressful situations, the concentration of MT in the leaves and roots
of grapevine seedlings is raised considerably, and the rise is amplified by the severity
of stress [161]. To prevent water loss during salt stress, plants seal their stomata. This
lowers stomatal conductance (GS), which in turn lowers photosynthesis [162]. However,
when subjected to salt stress, employing the right amount of MT may improve stomatal
function and enable plants to reopen their stomata [163]. Furthermore, under salt stress, MT
increased photosynthesis-related gene transcription while preserving the photosynthetic
apparatus [69].

By enhancing chlorophyll formation and reducing its breakdown during salt stress, MT
treatment improved the total chlorophyll content and the maximum photochemical reaction
efficiency of PSII (Fv/Fm). Under very salty conditions, plants transport extra salt ions from
the cytoplasm inside the vacuole or compartmentalize them into separate tissues [164]. The
salt-induced Na+/H+ antiporter in the tonoplast oversees compartmentalizing ions within
the cytoplasm into vacuoles in order to reduce ion concentrations within the cytoplasm [165].
MT is essential for maintaining ion homeostasis; in order to maintain ion homeostasis
under salt stress, MT specifically upregulates the transporter genes NHX1 and AKT1 [166].
The application of MT as a set treatment combined with foliar spray resulted in higher
photosynthetic rate, stomatal conductance, transpiration rate, osmotic potential, osmatic
adjustment, proline, and soluble protein content of cassava plants under salt stress [167].

6.3. Temperature

One of the main factors limiting plant growth is heat stress, which has a significant
negative impact on agricultural production worldwide. In order to sustain numerous
physiological, biochemical, and molecular mechanisms to deal with heat stress conditions,
MT works as a plant growth regulator. In a recent study, scientists discovered that the
ability of tomato to absorb CO2 and produce photosynthetic pigment increased when 100
M of MT was applied. MT lowers photoinhibition and defends the PSI and PSII reaction
centers [168]. By enhancing antioxidant defense systems like the bate-glutathione cycle
and rewiring the metabolic pathways for nitric oxide production and PAs, MT reduced
the severity of heat stress damage [169]. MT enhances tea quality under heat stress by
encouraging photosynthetic and biomass accumulation in tea plants [170]. In addition,
MT-treated seedlings showed increased expression of anti-stress responsive genes like
TaMYB80, TaWRKY26, and TaWRKY39 as well as ROS-related genes TaCAT, TaPOD, and
TaSOD [90]. MT treatment increases the root length; leaf area; plant height; fresh and dry
root weight; shoot weight; CAT, SOD, POD, and APX activities; soluble sugar content; and
protein content of maize [120] and mung bean [73] (Figure 4) under stressful conditions.
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6.4. Flooding

MT has been shown to be an effective phytohormone for protecting apple plants
against waterlogging stress as reported by [171]. A recent research study by [172] examined
the effects of MT pretreatment on lucerne under waterlogging stress and found that it
could mitigate the damage caused by the stress and improve chlorophyll content, plant
growth, and PSII efficiency. Zheng et al. [171] originally suggested that MT facilitated the
mechanism for tolerating waterlogging in apple seedlings by successfully preventing the
ROS burst and subsequent mitochondrial breakdown; this mechanism preserves aerobic
respiration and photosynthesis. Another concept in lucerne was proposed by [172] via
interacting with or directly controlling the metabolic pathways of ethylene and polyamines
(PAs). The scientists suggested that MT promotes waterlogging tolerance, at least in part,
by regulating ethylene and polyamine’s production because ethylene is suppressed and
polyamine is promoted. As a result, cell membranes are more stable, photosynthesis is
improved, and there is less ethylene-responsive senescence [172].

6.5. Heavy Metals

Toxicity caused by heavy metals (HM) is one of the most harmful abiotic stressors.
Plants do not need lead [31], cadmium [173], mercury (Hg), or arsenic (As), all of which
are extremely detrimental to plants [174,175]. Authors including Chandrakar et al. [176],
Chen et al. [177], and Umapathi et al. [91] reported that the majority of heavy metals con-
tinuously produce ROS which can lead to oxidative stress in plants and the unanticipated
side effect of heavy metal toxicity (Figure 5). Lipid peroxidation, a harmful condition
brought on by HM-induced ROS, impairs the integrity and functionality of cell mem-
branes [178,179]. Numerous studies emphasized how heavy metals affect the accumulation
of endogenous MT in plants. Studies revealed that HMs induced endogenous MT biosyn-
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thesis in the root tissue of Hordeum vulgare (barley), Solanum lycopersicum (tomato), and
Lupinus albus (lupin) [34,180,181]; in the leaves of Nicotiana tabacum, Arabidopsis thaliana, and
tomato [182,183]; and in the seedlings of Oryza sativa (rice) [184]. The structural integrity of
cellular organelles such as chloroplasts, mitochondria, and the endoplasmic reticulum is
dramatically compromised in HMs under Cd stress, for example. Endogenous serotonin
N-acetyltransferase (SNAT) enzymes are subsequently released into the cytosol as a re-
sult [185,186] where they can easily come into contact with serotonin, resulting in N-acetyl
serotonin synthesis and ultimately MT formation.
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MT is useful for a variety of purposes, and because of its capacity to directly neutralize
ROS, it aids in protecting plants from oxidative stress. Additionally, it possesses chelating
properties, which may help to lessen the toxicity brought on by such metals. MT, an
amphiphilic molecule, may easily diffuse through cell membranes, enter the cytoplasm,
and go to subcellular compartments [187]. Through the activation of antioxidant defense
mechanisms, exogenous MT application can reduce Cd and Zn damages and enhance
tolerance in lemon balm plants as opined by Hodzic et al. [188].

Table 1. Effect of melatonin on the physiological functions in crop plants under various abiotic
stresses.

S.No. Plant Species Abiotic Stress Melatonin
Concentration (µM) Plant Response Reference

1 Rice

Salinity 20 Improve the root and shoot, dry
weight, and K+ content [15]

Drought 200
Improve the germination
percentage and seedling
characters

[37]

High temperature 200
Improved photosynthesis,
stabilize starch synthesis, and
reduce grain chalkiness

[189]

Low temperature 150 Improved seed germination and
traits associated with germination [190]
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Table 1. Cont.

S.No. Plant Species Abiotic Stress Melatonin
Concentration (µM) Plant Response Reference

2 Wheat Salinity 200 Seed germination and seedling
characteristics [56]

3 Maize Drought 100

Effective increase in the
antioxidant enzyme and
photosystems activity
Reduces the H2O2, superoxide
anion, and MDA levels

[191]

4 Cotton Drought 100 Delaying leaf senescence [192]

5 Soybean Nitrogen deficient 100

Better total nitrogen fixation
capacity and upregulating the
expression of genes related to
nitrogen metabolism (NR2, NiR,
GS1β, GOGAT, and GmAAP6a)

[66]

6 Green gram
High temperature 100

Improve the root and shoot length
Reduced the MDA content and
improve the antioxidant content

[193]

Drought 100 Increased seed germination and
seedling vigor [36]

7 Finger millet Drought

60 as nano
formulation

Increased photosynthetic activity,
effective antioxidant system, and
improved carbohydrate
assimilation and translocation

[194]

40 and 60 Improve the seed germination
and seedling establishment [195]

8 Tomato

Cadmium stress 108
Minimizing the Cd accumulation
in fruit and increase the
antioxidant enzyme activity

[91]

High temperature 10
Silencing the COMT1gene and
increase the APX and CAT
activity

[196]

9 Cassava Salinity 430 Higher gas exchange and soluble
protein content [167]

10 Alfalfa Salinity 300
Increase the antioxidant capacity,
osmotic regulation, and
photosynthesis

[72]

11 Apple

Salinity 0.1

Maintain ion homeostasis,
enhance the level of antioxidant
enzymes, and maintain
photosynthesis

[166]

Drought 100 Improved nitrogen assimilation
and endogenous MT content [148]

12 Grapes Drought 100 Prevent chloroplast damage and
improve antioxidant activity [197]

13 Coffee Drought 300 Enhanced carboxylation efficiency
and antioxidant activity [153]
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Table 1. Cont.

S.No. Plant Species Abiotic Stress Melatonin
Concentration (µM) Plant Response Reference

14 Tea

Chilling stress 100
Prevent oxidative damage and
improved photosynthetic
pigments

[198]

Drought 100
Reduce membrane damage and
enhance the level of proline, total
protein, and sugars

[199]

Cd Toxicity 150
Scavenge reactive oxygen species
and enhance the level of
antioxidants

[200]

15 Cucumber Chilling stress 200 Reduce electrolyte leakage and
improve photosynthesis [201]

16 Melon Chilling stress 200 Reduce ROS and increase proline
and soluble protein content [202]

17 Peach Chilling stress 200
Prevent oxidative damage and
improve the ascorbic acid content
in fruits

[203]

7. Approaches for Enhancing Endogenous Melatonin

MT is a pivotal compound present in the plant system. In that way, increasing
endogenous MT is crucial to combat against abiotic stresses in the agricultural field. MT
biosynthesis consists of four enzymatic processes, viz., TDC, T5H, SNAT, and ASMT.

The transgenic approach is a useful tool for improving the endogenous MT content.
Nonetheless, notable studies were conducted concerning the overexpression of MT un-
der various abiotic stresses in different crops. Previously, studies confirmed that abiotic
stress significantly increases the MT level in plant systems [204,205]. In order to boost
the synthesis of antioxidants like MT without impairing plant growth and development
or having unintended side effects on other metabolic pathways, endogenous metabolic
pathways must be modulated. Overexpression of genes and enzymes involved in MT
biosynthesis through the transgenic approach might improve the endogenous MT. In
plants, the major enzymes involved in the MT biosynthetic pathway such as serotonin
N-acetyl transferase (SNAT) and N-acetyl serotonin methyl transferase (ASMT) were found
to have maximum catalytic efficiency values at 55 ◦C (Byeon et al., 2014). N-acetyl sero-
tonin O-methyltransferase (ASMT), one of the enzymes involved in the MT biosynthesis
process, has been expressed in transgenic plants [206]. In transgenic tomato plants, the
overexpression of MT biosynthetic genes such as arylalkyl amine N-acetyl transferase
(AANAT) and hydroxyindole-O-methyl transferase (HIOMT) increases the endogenous
MT level and enhances the tolerance capacity of plants against stresses [207]. The enzyme
caffeine acid methyltransferase (COMT), which is involved in MT biosynthesis, may also
help to control plant development, growth, and stress responses. CrCOMT from Carex
iridescent overexpression alters MT production in Arabidopsis thaliana and causes an increase
in salt stress [208]. In Brassica rapa, miR168a enhances the MT level through increased
expression of the O-METHYLTRANSFERASE 1 (OMT1) gene, which is responsible for MT
biosynthesis [209].

The serotonin N-acetyltransferase (SNAT) enzyme which is crucial for MT biosynthesis
increases the accumulation of MT in plants in response to stress conditions [210]. Overex-
pression of the VvSNAT1 gene also increased MT synthesis in transgenic Arabidopsis [211].
Suppression of the OsSNAT gene reduced the levels of endogenous MT in transgenic rice
(Oryza sativa L.) plants, which results in poor seedling growth and development [182]. In
transgenic Arabidopsis plants, mutation of the apple MzSNAT5 gene leads to the reduced
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production of MT in the mitochondria, which results in enhanced ROS accumulation and
susceptibility of plants to drought stress [186]. Increased MT synthesis was observed
in transgenic Arabidopsis by overexpression of the TaCOMT gene [104]. The tolerance
capacity of the tomato plant to salinity stress improved with the upregulation of MT biosyn-
thetic gene SlCOMT1 [212]. Similarly, overexpressing the HIOMT gene in apple resulted in
increased MT synthesis and reduced production of ROS [213].

Exogenous application is another approach to bring up the endogenous MT content
inside the plant. In addition to being a natural bioregulator, exogenous compounds like
benzothiadiazole (BTH) and chitosan (CHT) can be used to stimulate the production of MT
in plants [214]. Numerous studies were conducted on the enhancement of endogenous MT
through exogenous application in various plants such as tomato [183], Arabidopsis [215],
groundnut [216], and hemp [217]. In response to various stresses in plants, the application
of MT accumulates more endogenous MT by overexpressing the MT biosynthetic genes
such as TDC, T5H, SNAT, and ASMT [27]. In addition, the foliar spray application of MT
significantly enhanced the endogenous MT content in the tomato plant under cadmium-
induced heavy metal stress [183].

8. Conclusions

Crop abiotic stress causes a significant yield decline, which has an impact on the
safety of the world’s food supply. Therefore, it is more important to concentrate on raising
agricultural plants’ resistance to stress. Globally, MT is evolving as a pioneer compound to
mitigate the abiotic stresses in the agricultural field. We outlined the regulatory systems that
underpin plants’ ability to withstand abiotic stress in this review. MT significantly improves
the scavenging of ROS and RNS to enhance the antioxidant capacity. The biosynthetic
pathway of MT has been identified in a number of plant species in which TDC, T5H, SNAT,
ASMT, and COMT are the key enzymes for MT biosynthesis. Due to its positive impacts on
plant tolerance to environmental stressors, the MT catabolic pathway and its metabolites
have drawn more and more attention in recent years. The exogenous MT application
in varied crops exhibited a better performance in physiological and biochemical traits
associated with improved yield potential. Moreover, the exogenous application of MT is
not specific to genotype and it is less time-consuming, more cost-effective, and is readily
available for large-scale applications. The effect of MT on growth, physiology, yield, and
biochemical parameters reveals that there might be a long-term effect of this compound in
improving the abiotic stress tolerance. Hence, it is necessary to study how the pretreatment
of MT could be effective to prepare crops for unpredicted sudden stress conditions. Some
of the methods through which MT interacts with other phytohormones remain obscure,
despite the fact that it can affect the manufacturing and signaling of other phytohormones.
MT application studies have been extensively studied only at a laboratory level and the
large-scale commercial application of MT has been rarely conducted. Hence, field-level
examinations are required to assess the effects of MT on crop yield under open conditions.

Author Contributions: Conceptualization, K.M.K.; Bibliographic search and writing original draft,
U.M., A.K. (Anitha Kuppusamy), M.R., and A.K. (Arunkumar Kathirvel); Review and editing,
G.V., S.A., K.R., K.P.S., S.R., T.K. and S.K.; Visualization, U.M., A.K. (Anitha Kuppusamy) and A.K.
(Arunkumar Kathirvel); All authors have read and agreed to the published version of the manuscript.

Funding: S.K. was supported by Formas—A Swedish Research Council for Sustainable Development
(grant number 2018-01301) and C4F (Crops for the Future).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: This study did not generate any new data or analyze any existing data.
Sharing of data is not relevant to this subject.

Conflicts of Interest: The authors declare no conflict of interest.



Agronomy 2023, 13, 2405 17 of 25

References
1. Lerner, A.B.; Case, J.D.; Takahashi, Y.; Lee, T.H.; Mori, W. Isolation of melatonin, the pineal gland factor that lightens melanocyteS1.

J. Am. Chem. Soc. 1958, 80, 2587. [CrossRef]
2. Dubbels, R.; Reiter, R.; Klenke, E.; Goebel, A.; Schnakenberg, E.; Ehlers, C.; Schiwara, H.; Schloot, W. Melatonin in edible plants

identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. J. Pineal Res. 1995, 18,
28–31. [CrossRef] [PubMed]

3. Van Tassel, D.L.; Roberts, N.; Lewy, A.; O’Neill, S.D. Melatonin in plant organs. J. Pineal Res. 2001, 31, 8–15. [CrossRef] [PubMed]
4. Hattori, A.; Herbert, D.C.; Vaughan, M.K.; Yaga, K.; Reiter, R. Melatonin inhibits luteinizing hormone releasing hormone (LHRH)

induction of LH release from fetal rat pituitary cells. Neurosci. Lett. 1995, 184, 109–112. [CrossRef] [PubMed]
5. Zohar, R.; Izhaki, I.; Koplovich, A.; Ben-Shlomo, R. Phytomelatonin in the leaves and fruits of wild perennial plants. Phytochem.

Lett. 2011, 4, 222–226. [CrossRef]
6. Murch, S.J.; Erland, L.A. A systematic review of melatonin in plants: An example of evolution of literature. Front. Plant Sci. 2021,

12, 683047. [CrossRef]
7. Blask, D.E.; Dauchy, R.T.; Sauer, L.A.; Krause, J.A. Melatonin uptake and growth prevention in rat hepatoma 7288CTC in response

to dietary melatonin: Melatonin receptor-mediated inhibition of tumor linoleic acid metabolism to the growth signaling molecule
13-hydroxyoctadecadienoic acid and the potential role of phytomelatonin. Carcinogenesis 2004, 25, 951–960. [PubMed]

8. Debnath, B.; Islam, W.; Li, M.; Sun, Y.; Lu, X.; Mitra, S.; Hussain, M.; Liu, S.; Qiu, D. Melatonin mediates enhancement of stress
tolerance in plants. Int. J. Mol. Sci. 2019, 20, 1040. [CrossRef]

9. Mauriz, J.L.; Collado, P.S.; Veneroso, C.; Reiter, R.J.; González-Gallego, J. A review of the molecular aspects of melatonin’s
anti-inflammatory actions: Recent insights and new perspectives. J. Pineal Res. 2013, 54, 1–14. [CrossRef]

10. Fan, J.; Xie, Y.; Zhang, Z.; Chen, L. Melatonin: A multifunctional factor in plants. Int. J. Mol. Sci. 2018, 19, 1528. [CrossRef]
11. Zhao, D.; Yu, Y.; Shen, Y.; Liu, Q.; Zhao, Z.; Sharma, R.; Reiter, R.J. Melatonin synthesis and function: Evolutionary history in

animals and plants. Front. Endocrinol. 2019, 10, 249. [CrossRef] [PubMed]
12. Zhou, Y.; Chen, M.; Guo, J.; Wang, Y.; Min, D.; Jiang, Q.; Ji, H.; Huang, C.; Wei, W.; Xu, H. Overexpression of soybean DREB1

enhances drought stress tolerance of transgenic wheat in the field. J. Exp. Bot. 2020, 71, 1842–1857. [CrossRef] [PubMed]
13. Ahmad, I.; Song, X.; Hussein Ibrahim, M.E.; Jamal, Y.; Younas, M.U.; Zhu, G.; Zhou, G.; Adam Ali, A.Y. The role of melatonin in

plant growth and metabolism, and its interplay with nitric oxide and auxin in plants under different types of abiotic stress. Front.
Plant Sci. 2023, 14, 1108507. [CrossRef] [PubMed]

14. Khan, D.; Cai, N.; Zhu, W.; Li, L.; Guan, M.; Pu, X.; Chen, Q. The role of phytomelatonin receptor 1-mediated signaling in plant
growth and stress response. Front. Plant Sci. 2023, 14, 1142753. [CrossRef]

15. Liu, J.; Shabala, S.; Zhang, J.; Ma, G.; Chen, D.; Shabala, L.; Zeng, F.; Chen, Z.H.; Zhou, M.; Venkataraman, G. Melatonin improves
rice salinity stress tolerance by NADPH oxidase-dependent control of the plasma membrane K+ transporters and K+ homeostasis.
Plant Cell Environ. 2020, 43, 2591–2605. [CrossRef]

16. Castañares, J.L.; Bouzo, C.A. Effect of exogenous melatonin on seed germination and seedling growth in melon (Cucumis melo L.)
under salt stress. Hortic. Plant J. 2019, 5, 79–87. [CrossRef]

17. Li, Z.; Su, X.; Chen, Y.; Fan, X.; He, L.; Guo, J.; Wang, Y.; Yang, Q. Melatonin improves drought resistance in maize seedlings by
enhancing the antioxidant system and regulating abscisic acid metabolism to maintain stomatal opening under PEG-induced
drought. J. Plant Biol. 2021, 64, 299–312. [CrossRef]

18. Li, C.; Tan, D.-X.; Liang, D.; Chang, C.; Jia, D.; Ma, F. Melatonin mediates the regulation of ABA metabolism, free-radical
scavenging, and stomatal behaviour in two Malus species under drought stress. J. Exp. Bot. 2015, 66, 669–680. [CrossRef]

19. Hernández, I.G.; Gomez, F.J.V.; Cerutti, S.; Arana, M.V.; Silva, M.F. Melatonin in Arabidopsis thaliana acts as plant growth
regulator at low concentrations and preserves seed viability at high concentrations. Plant Physiol. Biochem. 2015, 94, 191–196.
[CrossRef]

20. Kołodziejczyk, I.; Dzitko, K.; Szewczyk, R.; Posmyk, M.M. Exogenous melatonin improves corn (Zea mays L.) embryo proteome
in seeds subjected to chilling stress. J. Plant Physiol. 2016, 193, 47–56. [CrossRef]

21. Zhang, H.; Qiu, Y.; Ji, Y.; Wu, X.; Xu, X.; Wu, P. Melatonin promotes seed germination via regulation of ABA signaling under low
temperature stress in cucumber. J. Plant Growth Regul. 2023, 42, 2232–2245. [CrossRef]
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