119 research outputs found

    Modulation of tumor angiogenesis by conditional expression of fibroblast growth factor-2 affects early but not established tumors.

    Get PDF
    Fibroblast growth factor-2 (FGF2) is a pleiotropic heparin-binding growth factor endowed with a potent angiogenic activity in vitro and in vivo. To investigate the impact of the modulation of FGF2 expression on the neovascularization at different stages of tumor growth, we generated stable transfectants (Tet-FGF2) from the human endometrial adenocarcinoma HEC-1-B cell line in which FGF2 expression is under the control of the tetracycline-responsive promoter (Tet-off system). After transfection, independent clones were obtained in which FGF2 mRNA and protein were up-regulated compared with parental cells. Also, the conditioned medium of Tet-FGF2 transfectants caused proliferation, urokinase-type plasminogen activator up-regulation, migration, and sprouting of cultured endothelial cells. A 3-day treatment of Tet-FGF2 cell cultures with tetracycline abolished FGF2 overexpression and the biological activity of the conditioned medium without affecting their proliferative capacity. Tet-FGF2 cells formed tumors when nude mice received s.c. injections. The administration of 2.0 mg/ml tetracycline in the drinking water before cell transplantation, continued throughout the whole experiment, inhibited FGF2 expression in Tet-FGF2 tumor lesions. This was paralleled by a significant decrease in the rate of tumor growth and vascularization to values similar to those observed in lesions generated by parental HEC-1-B cells. Tetracycline administration 20 days after tumor cell implant, although equally effective in reducing FGF2 expression and inhibiting tumor vascularity, only minimally impaired the growth of established Tet-FGF2 tumors. The results indicate that FGF2 expression deeply affects the initial tumor growth and neovascularization of HEC-1-B human endometrial adenocarcinoma in nude mice. On the contrary, the growth of established tumors appears to be independent of the inhibition of FGF2 expression and decreased vascular density. The possibility that a significant reduction of angiogenesis may not affect the progression of large tumors points to the use of antiangiogenic therapy in early tumor stage

    A role for VEGF as a negative regulator of pericyte function and vessel maturation.

    Get PDF
    Angiogenesis does not only depend on endothelial cell invasion and proliferation: it also requires pericyte coverage of vascular sprouts for vessel stabilization. These processes are coordinated by vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) through their cognate receptors on endothelial cells and vascular smooth muscle cells (VSMCs), respectively. PDGF induces neovascularization by priming VSMCs/pericytes to release pro-angiogenic mediators. Although VEGF directly stimulates endothelial cell proliferation and migration, its role in pericyte biology is less clear. Here we define a role for VEGF as an inhibitor of neovascularization on the basis of its capacity to disrupt VSMC function. Specifically, under conditions of PDGF-mediated angiogenesis, VEGF ablates pericyte coverage of nascent vascular sprouts, leading to vessel destabilization. At the molecular level, VEGF-mediated activation of VEGF-R2 suppresses PDGF-Rbeta signalling in VSMCs through the assembly of a previously undescribed receptor complex consisting of PDGF-Rbeta and VEGF-R2. Inhibition of VEGF-R2 not only prevents assembly of this receptor complex but also restores angiogenesis in tissues exposed to both VEGF and PDGF. Finally, genetic deletion of tumour cell VEGF disrupts PDGF-Rbeta/VEGF-R2 complex formation and increases tumour vessel maturation. These findings underscore the importance of VSMCs/pericytes in neovascularization and reveal a dichotomous role for VEGF and VEGF-R2 signalling as both a promoter of endothelial cell function and a negative regulator of VSMCs and vessel maturation

    Regulator of G-protein signaling 5 (RGS5) protein: a novel marker of cancer vasculature elicited and sustained by the tumor’s proangiogenic microenvironment

    Get PDF
    We previously identified regulator of G-protein signaling 5 (RGS5) among several genes expressed by tumor-derived endothelial cells (EC). In this study, we provide the first in vivo/ex vivo evidence of RGS5 protein in the vasculature of ovarian carcinoma clinical specimens and its absence in human ovaries. Consistent with this, we show higher amounts of Rgs5 transcript in EC isolated from human cancers (as opposed to normal tissues) and demonstrate that expression is sustained by a milieu of factors typical of the proangiogenic tumor environment, including vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (FGF-2). Supporting these findings, we show elevated levels of Rgs5 mRNA in the stroma from strongly (as opposed to weakly) angiogenic ovarian carcinoma xenografts and accordingly, we also show more of the protein associated to the abnormal vasculature. RGS5 protein predominantly colocalizes with the endothelium expressing platelet/endothelial cell adhesion molecule-1 (PECAM-1/CD31) and to a much lesser extent with perivascular/mural cells expressing platelet-derived growth factor receptor-beta (PDGFR-β) or alpha smooth muscle actin (αSMA). To toughen the relevance of the findings, we demonstrate RGS5 in the blood vessels of other cancer models endowed with a proangiogenic environment, such as human melanoma and renal carcinoma xenografts; to the contrary, it was undetectable in the vasculature of normal mouse tissues. RGS5 expression by the cancer vasculature triggered and retained by the proangiogenic microenvironment supports its exploitation as a novel biomarker and opens the path to explore new possibilities of therapeutic intervention aimed at targeting tumor blood vessels

    Effects of Dual Targeting of Tumor Cells and Stroma in Human Glioblastoma Xenografts with a Tyrosine Kinase Inhibitor against c-MET and VEGFR2

    Get PDF
    Contains fulltext : 118357.pdf (publisher's version ) (Open Access)Anti-angiogenic treatment of glioblastoma with Vascular Endothelial Growth Factor (VEGF)- or VEGF Receptor 2 (VEGFR2) inhibitors normalizes tumor vessels, resulting in a profound radiologic response and improved quality of life. This approach however does not halt tumor progression by diffuse infiltration, as this phenotype is less angiogenesis dependent. Combined inhibition of angiogenesis and diffuse infiltrative growth would therefore be a more effective treatment approach in these tumors. The HGF/c-MET axis is important in both angiogenesis and cell migration in several tumor types including glioma. We therefore analyzed the effects of the c-MET- and VEGFR2 tyrosine kinase inhibitor cabozantinib (XL184, Exelixis) on c-MET positive orthotopic E98 glioblastoma xenografts, which routinely present with angiogenesis-dependent areas of tumor growth, as well as diffuse infiltrative growth. In cultures of E98 cells, cabozantinib effectively inhibited c-MET phosphorylation, concomitant with inhibitory effects on AKT and ERK1/2 phosphorylation, and cell proliferation and migration. VEGFR2 activation in endothelial cells was also effectively inhibited . Treatment of BALB/c nu/nu mice carrying orthotopic E98 xenografts resulted in a significant increase in overall survival. Cabozantinib effectively inhibited angiogenesis, resulting in increased hypoxia in angiogenesis-dependent tumor areas, and induced vessel normalization. Yet, tumors ultimately escaped cabozantinib therapy by diffuse infiltrative outgrowth via vessel co-option. Of importance, in contrast to the results from experiments, blockade of c-MET activation was incomplete, possibly due to multiple factors including restoration of the blood-brain barrier resulting from cabozantinib-induced VEGFR2 inhibition. In conclusion, cabozantinib is a promising therapy for c-MET positive glioma, but improving delivery of the drug to the tumor and/or the surrounding tissue may be needed for full activity

    Tubulin-binding dibenz[c,e]oxepines: Part 2 Structural variation and biological evaluation as tumour vasculature disrupting agents

    Get PDF
    5,7-Dihydro-3,9,10,11-tetramethoxybenz[c,e]oxepin-4-ol 1, prepared from a dibenzyl ether precursor via Pd-catalysed intramolecular direct arylation, possesses broad-spectrum in vitro cytotoxicity towards various tumour cell lines, and induces vascular shutdown, necrosis and growth delay in tumour xenografts in mice at sub-toxic doses. The biological properties of 1 and related compounds can be attributed to their ability to inhibit microtubule assembly at the micromolar level, by binding reversibly to the same site of the tubulin αβ-heterodimer as colchicine 2 and the allocolchinol, N-acetylcolchinol 4

    Anti-angiogenic therapy for cancer: Current progress, unresolved questions and future directions

    Get PDF
    Tumours require a vascular supply to grow and can achieve this via the expression of pro-angiogenic growth factors, including members of the vascular endothelial growth factor (VEGF) family of ligands. Since one or more of the VEGF ligand family is overexpressed in most solid cancers, there was great optimism that inhibition of the VEGF pathway would represent an effective anti-angiogenic therapy for most tumour types. Encouragingly, VEGF pathway targeted drugs such as bevacizumab, sunitinib and aflibercept have shown activity in certain settings. However, inhibition of VEGF signalling is not effective in all cancers, prompting the need to further understand how the vasculature can be effectively targeted in tumours. Here we present a succinct review of the progress with VEGF-targeted therapy and the unresolved questions that exist in the field: including its use in different disease stages (metastatic, adjuvant, neoadjuvant), interactions with chemotherapy, duration and scheduling of therapy, potential predictive biomarkers and proposed mechanisms of resistance, including paradoxical effects such as enhanced tumour aggressiveness. In terms of future directions, we discuss the need to delineate further the complexities of tumour vascularisation if we are to develop more effective and personalised anti-angiogenic therapies. © 2014 The Author(s)

    Changes in plasma biomarkers following treatment with cabozantinib in metastatic castration-resistant prostate cancer: a post hoc analysis of an extension cohort of a phase II trial

    Full text link
    BACKGROUND: Cabozantinib is an orally available inhibitor of tyrosine kinases including VEGFR2 and c-MET. We performed a post hoc analysis to find associations between select plasma biomarkers and treatment response in patients (pts) with metastatic castration resistant prostate cancer (mCRPC) who received cabozantinib 100 mg daily as part of a phase 2 non-randomized expansion cohort (NCT00940225). METHODS: Plasma samples were collected at baseline, 6 weeks and at time of maximal response from 81 mCRPC pts with bone metastases, of which 33 also had measurable soft-tissue disease. Levels of 27 biomarkers were measured in duplicate using enzyme-linked immunosorbent assay. Spearman correlation coefficients were calculated for the association between biomarker levels or their change on treatment and either bone scan response (BSR) or soft tissue response according to RECIST. RESULTS: A BSR and RECIST response were seen in 66/81 pts (81 %) and 6/33 pts (18 %) respectively. No significant associations were found between any biomarker at any time point and either type of response. Plasma concentrations of VEGFA, FLT3L, c-MET, AXL, Gas6A, bone-specific alkaline phosphatase, interleukin-8 and the hypoxia markers CA9 and clusterin significantly increased during treatment with cabozantinib irrespective of response. The plasma concentrations of VEGFR2, Trap5b, Angiopoietin-2, TIMP-2 and TIE-2 significantly decreased during treatment with caboznatinib. CONCLUSIONS: Our data did not reveal plasma biomarkers associated with response to cabozantinib. The observed alterations in several biomarkers during treatment with cabozantinib may provide insights on the effects of cabozantinib on tumor cells and on tumor micro-environment and may help point to potential co-targeting approaches

    Anti-angiogenic alternatives to VEGF blockade

    Get PDF
    Angiogenesis is a major requirement for tumour formation and development. Anti-angiogenic treatments aim to starve the tumour of nutrients and oxygen and also guard against metastasis. The main anti-angiogenic agents to date have focused on blocking the pro-angiogenic vascular endothelial growth factors (VEGFs). While this approach has seen some success and has provided a proof of principle that such anti-angiogenic agents can be used as treatment, the overall outcome of VEGF blockade has been somewhat disappointing. There is a current need for new strategies in inhibiting tumour angiogenesis; this article will review current and historical examples in blocking various membrane receptors and components of the extracellular matrix important in angiogenesis. Targeting these newly discovered pro-angiogenic proteins could provide novel strategies for cancer therapy
    • …
    corecore