129 research outputs found

    Catalytic properties of pristine and defect-engineered Zr-MOF-808 metal organic frameworks

    Full text link
    [EN] Various defect-engineered Zr-trimesate MOF-808 compounds (DE-MOF-808) have been prepared by mixing the tricarboxylate ligands with dicarboxylate ligands; viz. isophthalate, pyridine-3,5-dicarboxylate, 5-hydroxy-isophthalate, or 5-amino-isophthalate. The resulting mixed-ligand compounds, MOF-808-X (X = IP, Pydc, OH or NH2) were all found to be highly crystalline and isostructural to the unmodified MOF-808. Pristine MOF-808 showed better catalytic performance than a UiO-66 reference compound for the Meerwein-Ponndorf-Verley (MPV) reduction of carbonyl compounds. This was attributed to a higher availability of coordinatively unsaturated Zr4+ sites (cus) in MOF-808 upon removal of formate ions. Meanwhile, cus in UiO-66 are only located at defect sites and are thus much less abundant. Further improvement of the catalytic activity of defect-engineered MOF-808-IP and MOF-808-Pydc was observed, which may be related with the occurrence of less crowded Zr4+ sites in DE-MOF-808. The wider pore structure of MOF-808 with respect to UiO-66 compounds translates into a sharp improvement of the activity for the MPV reduction of bulky substrates, as shown for estrone reduction to estradiol. Interestingly, MOF-808 produces a notable diastereoselectivity towards the elusive 17--hydroxy estradiol.This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 641887 (project acronym: DEFNET). Financial support from the Spanish Ministry of Economy and Competitiveness (program Severo Ochoa SEV20120267), the Spanish Ministry of Science and Innovation (project MAT2014-52085-C2-1-P), and the German Research Foundation (project KA 1698/19-1) is also gratefully acknowledged. The Microscopy Service of the Universitat Politecnica de Valencia are gratefully acknowledged for the SEM images.Mautschke, H.; Drache, F.; Senkovska, I.; Kaskel, S.; Llabrés I Xamena, FX. (2018). Catalytic properties of pristine and defect-engineered Zr-MOF-808 metal organic frameworks. Catalysis Science & Technology. 8(14):3610-3616. https://doi.org/10.1039/c8cy00742jS3610361681

    Anion Exchange and Catalytic Functionalization of the Zirconium-Based Metal-Organic Framework DUT-67

    Full text link
    [EN] A postsynthetic treatment with diluted solutions of the inorganic HCl or H2SO4 acids was applied to functionalize the eight connected Zr-based metal-organic framework DUT-67 (DUT = Dresden University of Technology). During the treatment, it is possible to remove and exchange the pristine modulator (formate) by Cl(-)or SO(4)(2-)anions. The position of the chlorine in the crystal structure of DUT-67 after HCl treatment could be determined by single-crystal X-ray diffraction analysis. Moreover, by means of the acidic treatment the polarity of the network as well as its Bronsted acid strength are increased, which have a crucial impact on the catalytic performance. The improved catalytic activity of the acid-treated materials was demonstrated in the esterification of levulinic acid with ethanol.This project received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant No. 641887 (project acronym: DEFNET). The Spanish Ministry of Economy and Competitiveness (program "Severo Ochoa"), the Spanish Ministry of Science and Innovation (Project No. MAT2014-52085-C2-1-P), and the German Research Foundation (Project No. KA 1698/19-1) are also acknowledged for financial support.Drache, F.; García Cirujano, F.; Nguyen, KD.; Bon, V.; Senkovska, I.; Llabrés I Xamena, FX.; Kaskel, S. (2018). Anion Exchange and Catalytic Functionalization of the Zirconium-Based Metal-Organic Framework DUT-67. Crystal Growth & Design. 18(9):5492-5500. https://doi.org/10.1021/acs.cgd.8b00832S5492550018

    Структурные переходы в металлоорганических каркасах семейства DUT-8

    Full text link
    Исследование выполнено при финансовой поддержке РФФИ и Немецкого научно-исследовательского сообщества в рамках научного проекта 21-52-12018

    Raman spectroscopy study of the switchable phases metal-organic frameworks DUT-8(Ni)

    Full text link
    Acknowledgments: I.S.,V.B., S.K. thank the DFG for financial support (FOR 2433); A.K., S.K., A.V. thank the Russian Foundation for Basic Research for financial support (18-02-00754)

    Nonlinear optical switching in regioregular porphyrin covalent organic frameworks

    Get PDF
    Covalent organic frameworks (COFs) have aroused immense scientific interest as an exhilarating class of porous materials due to their structure tunability and diverse properties. However, understanding of their response towards laser induced nonlinear optical (NLO) applications is in its infancy and demands prompt attention. Herein, we report three novel regioregular porphyrin based porous COFs, Por‐COF‐HH and its dual metalated congeners (Por‐COF‐ZnCu and Por‐COF‐ZnNi) with excellent NLO properties. Notably, intensity dependent NLO switching behavior was observed for these Por‐COFs, which is highly desirable for optical switching and optical limiting devices. Moreover, the efficient π‐conjugation and charge transfer transition in ZnCu‐Por‐COF enable a high nonlinear absorption coefficient (β=4470 cm/GW) and figure of merit (FOM = σ1/σo, 3565) values compared to other state‐of‐art materials including molecular porphyrins (β=~100‐400 cm/GW), metal‐organic frameworks (MOFs; β=~0.3‐0.5 cm/GW) and graphene (β=900 cm/GW)

    Exceptional adsorption induced cluster and network deformation in the flexible metal organic framework DUT 8 Ni observed by in situ X ray diffraction and EXAFS

    Get PDF
    The gate opening mechanism in the highly flexible MOF Ni2 2,6 ndc 2dabco DUT 8 Ni , DUT Dresden University of Technology with unprecedented unit cell volume change was elucidated in detail using combined single crystal X ray diffraction, in situ XRD and EXAFS techniques. The analysis of the crystal structures of closed pore cp and large pore lp phases reveals a drastic and unique unit cell volume expansion of up to 254 , caused by adsorption of gases, surpassing other gas pressure switchable MOFs significantly. To a certain extent, the structural deformation is specific for the guest molecule triggering the transformation due to subtle differences in adsorption enthalpy, shape, and kinetic diameter of the guest. Combined adsorption and powder diffraction experiments using nitrogen 77 K , carbon dioxide 195 K , and n butane 272.5 K as a probe molecules reveal a one step structural transformation from cp to lp. In contrast, adsorption of ethane 185 K or ethylene 169 K results in a two step transformation with the formation of intermediate phases. In situ EXAFS during nitrogen adsorption was used for the first time to monitor the local coordination geometry of the metal atoms during the structural transformation in flexible MOFs revealing a unique local deformation of the nickel based paddle wheel nod

    In Situ Monitoring of Unique Switching Transitions in the Pressure Amplifying Flexible Framework Material DUT 49 by High Pressure 129Xe NMR Spectroscopy

    Get PDF
    The pronounced flexibility of special metal amp; 8722;organic frameworks MOFs , so called soft porous crystals, is attracting increasing research interest. Studies of host amp; 8722;guest interactions in such materials are especially powerful if the measurements are performed in situ. 129Xe NMR spectroscopy is favorable because it provides characteristic, structure sensitive parameters such as chemical shifts. The combination of highpressure xenon adsorption with 129Xe NMR spectroscopy was used to elucidate the adsorption induced phase transitions in the recently discovered pressure amplifying framework material DUT 49, showing a unique negative gas adsorption NGA transition. In the open pore state, DUT 49op exhibits a hierarchical pore system involving both micro and mesopores. After reaching a critical relative pressure of ca. 0.15, adsorbed xenon induces mesopore contraction, resulting in a purely microporous contracted pore phase. This contraction is accompanied by release of xenon from the mesopores. Further increase of the pressure initiates the recovery of the mesopores without any indication of a structural intermediate in the NMR spectra. According to the NMR data, the structural transition induced by xenon is a collective, stepwise phenomenon rather than a continuous process. This is the first time that NGA has been studied by directly monitoring the guest and its interaction with the host framewor

    Geoendemic evaluation of clinical and epidemiological features of growth hormone deficiency in children of Odesa region based on the 15-year monitoring

    Get PDF
    Цель: изучить эпидемиологию дефицита гормона роста (ДГР) у детей и общую заболеваемость (на 10 000 детей) в разных геоэндемических провинциях Одесской области (Украина). Проведена клиническая, лабораторная и эпидемиологическая экспертиза ДГР у детей в трех физико"географических зонах (Лесостепная зона, Степная зона, Заднестровская зона) и в двух геоэндемических провинциях Одесской области (на территории Ананьевского и Любашевского районов). В 2016 году детское население Одесской области составило 450 622 ребенка от 0 до 17 лет. На диспансерном учете по поводу ДГР состояло 43 ребенка. Общая заболеваемость (ОЗ) ДГР по области составила 0,95. Распространенность (Р) заболевания (соотношение больных детей с ДГР к общей популяции детей) составило 43:450 622, или 1:10 400. В г. Одессе зарегистрировано 15 детей с ДГР на 153 530 детского населени; ОЗ составила 0,98; Р – 15:153530, или 1:10 200. Соотношение мальчиков и девочек составило 2,3:1 для области и 2:1 для г. Одессы. По физико"географическим зонам Одесской области это соотношение составило: в Лесостепной зоне – 3:1, в Степной зоне – 2:1 и Заднестровской – 1,7:1. Наибольшие показатели ОЗ (1,67) и Р (1:5 900) ДГР у детей выявлены в Лесостепной, наименьшие — у детей Степной зоны (0,59 и 1:16 700). Максимальная заболеваемость отмечена в геоэндемических провинциях, расположенных в местах разломов земной коры на территории Одесской области. Анализ выявляемости ДГР показал наличие нескольких возрастных «волн»: в возрасте 5–6, 10–12 и 12–14 лет. Распространенность и общая заболеваемость ДГР у детей гетерогенны в различных физико-географических зонах Одесской области и требуют дальнейшего изучения возможной связи заболевания с геоэндемическими провинциями и экологическими особенностями районов.Мета: вивчити епідеміологію дефіциту гормону росту (ДГР) у дітей і загальну захворюваність (на 10 000 дітей) у різних геоендемічних провінціях Одеської області (Україна). Проводилася клінічна, лабораторна й епідеміологічна експертиза ДГР у дітей у трьох фізико"географічних зонах (Лісостепова зона, Степова зона, Задністровська зона) і в двох геоендемічних провінцій Одеської області (на території Ананьївського і Любашівського районів), У 2016 р. дитяче населення Одеської області склало 450 622 дитини від 0 до 17 років. На диспансерному обліку з приводу ДГР знаходилося 43 дитини. Загальна захворюваність (ЗЗ) ДГР по області склала 0,95. Поширеність (П) захворювання (співвідношення хворих дітей з ДГР до загальної популяції дітей) склало 43: 450 622, або 1:10 400 В Одесі зареєстровано 15 дітей з ДГР на 153 530 дитячого населення; ЗЗ склала 0,98; П – 15:153530, або 1:10 200. Співвідношення хлопчиків і дівчаток склало 2,3:1 для області і 2:1 для м. Одеси. За фізико"географічним зонам Одеської області це співвідношення склало: у Лісостеповій зоні – 3:1, у Степовій зоні – 2:1 і Заднестровскій – 1,7:1. Найбільшу ЗЗ (1,67) і П (1: 5 900) ДГР у дітей виявлено в Лісостеповій, найменшу – у дітей Степової зони (0,59 і 1:16 700). Максимальна захворюваність відзначена у геоендемічних провінціях, розташованих в місцях розломів земної кори на території Одеської області. Аналіз виявлення ДГР показав наявність декількох вікових «хвиль»: у віці 5–6 років, 10"12 років і 12–14 років. Поширеність і загальна захворюваність ДГР у дітей гетерогенні в різних фізико"географічних зонах Одеської області і вимагають подальшого вивчення можливого зв'язку захворювання з геоендемічними провінціями та екологічними особливостями районів.Objective: to explore the epidemiology of pediatric growth hormone deficiency (GHD) and the overall morbidity (per 10 000 children) in different geoendemic provinces of Odesa region (Ukraine). Material and methods: clinical laboratory and epidemiological examination of pediatric GHD in 3 physiographic zones (forest"steppe zone, steppe zone, interfluves zone) and in 2 geoendemic provinces of Odesa region (on the territory of Ananivskyi and Liubashevskyi districts). The pediatric population (0–17 years) in Odesa region at the end of 2016 included 450,622. Among them 43 children with GHD were followed up in the Endocrinology Department of Odesa Regional Children's Hospital. The total incidence (TI) of GHD in Odesa region compiled 0.95. The GHD prevalence ratio (PR) (ratio of sick children with GHD to the general population of children) was (43:450,622 or 1:10,400). There were 15 children with GHD among 153,530 of the children's population in Odesa. TI compiled 0.98; PR – (15:153,530 or 1:10,200).The ratio of sick boys and girls was 2.3:1 for the region and 2:1 for Odesa. According to the physicjgraphic zones of Odesa region, this ratio was: in the forest–steppe zone – (3:1), in the steppe zone – (2:1) and in the interfluve zone – (1.7:1). The highest TI (1.67) and PR (1:5,900) of GHD in children are found in the forest"steppe zone. The lowest TI was in children from the steppe zone: (0.59), where PR compiled (1:16,700). The highest morbidity is noted in the so"called «geoendemic provinces» located at the fault zones of the Earth's crust in north part of Odesa region. GHD is underdiagnosed and detectability is associated with several age"related «waves»: at the age of 5–6 years; 10–12 years and 12–14 years. The heterogeneity GHD prevalence in various physicographical zones of Odesa region requires further study of the possible connection of the disease with geoendemic provinces and ecological features of areas

    Organic-inorganic supramolecular solid catalyst boosts organic reactions in water

    Get PDF
    [EN] Coordination polymers and metal-organic frameworks are appealing as synthetic hosts for mediating chemical reactions. Here we report the preparation of a mesoscopic metal-organic structure based on single-layer assembly of aluminium chains and organic alkylaryl spacers. The material markedly accelerates condensation reactions in water in the absence of acid or base catalyst, as well as organocatalytic Michael-type reactions that also show superior enantioselectivity when comparing with the host-free transformation. The mesoscopic phase of the solid allows for easy diffusion of products and the catalytic solid is recycled and reused. Saturation transfer difference and two-dimensional H-1 nuclear Overhauser effect NOESY NMR spectroscopy show that non-covalent interactions are operative in these host-guest systems that account for substrate activation. The mesoscopic character of the host, its hydrophobicity and chemical stability in water, launch this material as a highly attractive supramolecular catalyst to facilitate (asymmetric) transformations under more environmentally friendly conditions.This work was funded by ERC-AdG-2014-671093-SynCatMatch and the Generalitat Valenciana (Prometeo). M.B. acknowledges the funding: CTQ2014-52633-P. The Severo Ochoa program (SEV-2012-0267) is thankfully acknowledged.García García, P.; Moreno Rodríguez, JM.; Díaz Morales, UM.; Bruix, M.; Corma Canós, A. (2016). Organic-inorganic supramolecular solid catalyst boosts organic reactions in water. Nature Communications. 7. https://doi.org/10.1038/ncomms10835S7Li, B. et al. A porous metal-organic framework with dynamic pyrimidine groups exhibiting record high methane storage working capacity. J. Am. Chem. Soc. 136, 6207–6210 (2014).Getman, R. B., Bae, Y.-S., Wilmer, C. E. & Snurr, R. Q. Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal–organic frameworks. Chem. Rev. 112, 703–723 (2012).Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. Hydrogen storage in metal–organic frameworks. Chem. Rev. 112, 782–835 (2012).Li, B., Wen, H.-M., Zhou, W. & Chen, B. Porous metal-organic frameworks for gas storage and separation: what, how, and why? J. Phys. Chem. Lett. 5, 3468–3479 (2014).Li, J.-R., Sculley, J. & Zhou, H.-C. Metal–organic frameworks for separations. Chem. Rev. 112, 869–932 (2012).Cui, Y., Yue, Y., Qian, G. & Chen, B. Luminescent functional metal–organic frameworks. Chem. Rev. 112, 1126–1162 (2012).Yoon, M., Suh, K., Natarajan, S. & Kim, K. Proton conduction in metal–organic frameworks and related modularly built porous solids. Angew. Chem. Int. Ed. 52, 2688–2700 (2013).Kurmoo, M. Magnetic metal-organic frameworks. Chem. Soc. Rev. 38, 1353–1379 (2009).Horcajada, P. et al. Metal–organic frameworks in biomedicine. Chem. Rev. 112, 1232–1268 (2012).Liu, J. et al. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev. 43, 6011–6061 (2014).Rowsell, J. L. C. & Yaghi, O. M. Metal–organic frameworks: a new class of porous materials. Micropor. Mesopor. Mat. 73, 3–14 (2004).Eubank, J. F. et al. The next chapter in MOF pillaring strategies: trigonal heterofunctional ligands to access targeted high-connected three dimensional nets, isoreticular platforms. J. Am. Chem. Soc. 133, 17532–17535 (2011).Rodenas, T. et al. Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 14, 48–55 (2015).Chang, Z. et al. Rational construction of 3D pillared metal–organic frameworks: synthesis, structures, and hydrogen adsorption properties. Inorg. Chem. 50, 7555–7562 (2011).Cheetham, A. K., Rao, C. N. R. & Feller, R. K. Structural diversity and chemical trends in hybrid inorganic-organic framework materials. Chem. Commun. 4780–4795 (2006).Loiseau, T. et al. A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem. Eur. J. 10, 1373–1382 (2004).Senkovska, I. et al. New highly porous aluminium based metal-organic frameworks: Al(OH)(ndc) (ndc=2,6-naphthalene dicarboxylate) and Al (OH) (bpdc) (bpdc=4,4′-biphenyl dicarboxylate). Micropor. Mesopor. Mat. 122, 93–98 (2009).Klein, N. et al. Structural flexibility and intrinsic dynamics in the M2(2,6-ndc)2(dabco) (M=Ni, Cu, Co, Zn) metal-organic frameworks. J. Mater. Chem. 22, 10303–10312 (2012).Hoffmann, H. C. et al. High-pressure in situ 129Xe NMR spectroscopy and computer simulations of breathing transitions in the metal–organic framework Ni2(2,6-ndc)2(dabco) (DUT-8(Ni). J. Am. Chem. Soc. 133, 8681–8690 (2011).Gu, J.-M., Kim, W.-S. & Huh, S. Size-dependent catalysis by DABCO-functionalized Zn-MOF with one-dimensional channels. Dalton Trans. 40, 10826–10829 (2011).Carson, C. G. et al. Synthesis and structure characterization of copper terephthalate metal–organic frameworks. Eur. J. Inorg. Chem. 2009, 2338–2343 (2009).Yang, Q. et al. Probing the adsorption performance of the hybrid porous MIL-68(Al): a synergic combination of experimental and modelling tools. J. Mater. Chem. 22, 10210–10220 (2012).Li, H. et al. Visible light-driven water oxidation promoted by host-guest interaction between photosensitizer and catalyst with a high quantum efficiency. J. Am. Chem. Soc. 137, 4332–4335 (2015).Hapiot, F., Bricout, H., Menuel, S., Tilloy, S. & Monflier, E. Recent breakthroughs in aqueous cyclodextrin-assisted supramolecular catalysis. Catal. Sci. Technol. 4, 1899–1908 (2014).Harada, A., Takashima, Y. & Nakahata, M. Supramolecular polymeric materials via cyclodextrin-guest interactions. Acc. Chem. Res. 47, 2128–2140 (2014).Cong, H. et al. Substituent effect of substrates on cucurbit[8]uril-catalytic oxidation of aryl alcohols. J. Mol. Catal. A Chem. 374-375, 32–38 (2013).Masson, E., Ling, X., Joseph, R., Kyeremeh-Mensah, L. & Lu, X. Cucurbituril chemistry: a tale of supramolecular success. RSC Adv. 2, 1213–1247 (2012).Song, F.-T., Ouyang, G.-H., Li, Y., He, Y.-M. & Fan, Q.-H. Metallacrown ether catalysts containing phosphine-phosphite polyether ligands for Rh-catalyzed asymmetric hydrogenation—enhancements in activity and enantioselectivity. Eur. J. Org. Chem. 2014, 6713–6719 (2014).Rebilly, J.-N. & Reinaud, O. Calixarenes and resorcinarenes as scaffolds for supramolecular metallo-enzyme mimicry. Supramol. Chem. 26, 454–479 (2014).Ajami, D., Liu, L. & Rebek, J. Jr Soft templates in encapsulation complexes. Chem. Soc. Rev. 44, 490–499 (2015).Corma, A. & Garcia, H. Supramolecular host-guest systems in zeolites prepared by ship-in-a-bottle synthesis. Eur. J. Inorg. Chem. 2004, 1143–1164 (2004).Kemp, D. S., Cox, D. D. & Paul, K. G. Physical organic chemistry of benzisoxazoles. IV. Origins and catalytic nature of the solvent rate acceleration for the decarboxylation of 3-carboxybenzisoxazoles. J. Am. Chem. Soc. 97, 7312–7318 (1975).Thorn, S. N., Daniels, R. G., Auditor, M. T. & Hilvert, D. Large rate accelerations in antibody catalysis by strategic use of haptenic charge. Nature 373, 228–230 (1995).Yoshizawa, M., Klosterman, J. K. & Fujita, M. Functional molecular flasks: new properties and reactions within discrete, self-assembled hosts. Angew. Chem. Int. Ed. 48, 3418–3438 (2009).Yoshizawa, M., Tamura, M. & Fujita, M. Diels-Alder in aqueous molecular hosts: unusual regioselectivity and efficient catalysis. Science 312, 251–254 (2006).Murase, T., Nishijima, Y. & Fujita, M. Cage-catalyzed knoevenagel condensation under neutral conditions in water. J. Am. Chem. Soc. 134, 162–164 (2012).Zhao, C., Toste, F. D., Raymond, K. N. & Bergman, R. G. Nucleophilic substitution catalyzed by a supramolecular cavity proceeds with retention of absolute stereochemistry. J. Am. Chem. Soc. 136, 14409–14412 (2014).Choi, M. et al. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 461, 246–249 (2009).Loiseau, T. et al. MIL-96, a porous aluminum trimesate 3D structure constructed from a hexagonal network of 18-membered rings and μ3-Oxo-centered trinuclear units. J. Am. Chem. Soc. 128, 10223–10230 (2006).Bezverkhyy, I. et al. MIL-53(Al) under reflux in water: formation of γ-AlO(OH) shell and H2BDC molecules intercalated into the pores. Micropor. Mesopor. Mat. 183, 156–161 (2014).Wang, L.-M. et al. Sodium stearate-catalyzed multicomponent reactions for efficient synthesis of spirooxindoles in aqueous micellar media. Tetrahedron 66, 339–343 (2010).List B. Science of Synthesis: Asymmetric Organocatalysis 1, Lewis Base and Acid Catalysts Georg Thieme Verlag (2012).He, T., Gu, Q. & Wu, X.-Y. Highly enantioselective Michael addition of isobutyraldehyde to nitroalkenes. Tetrahedron 66, 3195–3198 (2010).Avila, A., Chinchilla, R., Fiser, B., Gómez-Bengoa, E. & Nájera, C. Enantioselective Michael addition of isobutyraldehyde to nitroalkenes organocatalyzed by chiral primary amine-guanidines. Tetrahedron Asymmetry 25, 462–467 (2014).Meyer, B. & Peters, T. NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew. Chem. Int. Ed. 42, 864–890 (2003).Szczygiel, A., Timmermans, L., Fritzinger, B. & Martins, J. C. Widening the view on dispersant−pigment interactions in colloidal dispersions with saturation transfer difference NMR spectroscopy. J. Am. Chem. Soc. 131, 17756–17758 (2009).Basilio, N., Martín-Pastor, M. & García-Río, L. Insights into the structure of the supramolecular amphiphile formed by a sulfonated calix[6]arene and alkyltrimethylammonium surfactants. Langmuir 28, 6561–6568 (2012).Mayer, M. & Meyer, B. Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew. Chem. Int. Ed. 38, 1784–1788 (1999)
    corecore