8 research outputs found

    Usefulness of ß-d-Glucan Assay for the First-Line Diagnosis of Pneumocystis Pneumonia and for Discriminating between Pneumocystis Colonization and Pneumocystis Pneumonia

    No full text
    According to the immunodepression status, the diagnosis of Pneumocystis jirovecii pneumonia (PjP) may be difficult. Molecular methods appear very sensitive, but they lack specificity because Pj DNA can be detected in Pneumocystis-colonized patients. The aim of this study was to evaluate the value of a serum ß-d-Glucan (BDG) assay for the diagnosis of PjP in a large cohort of HIV-negative and HIV-positive patients, either as a first-line diagnostic test for PjP or as a tool to distinguish between colonization and PjP in cases of low fungal load. Data of Pj qPCR performed on bronchopulmonary specimens over a 3-year period were retrieved retrospectively. For each result, we searched for a BDG serum assay performed within ±5 days. Among the 69 episodes that occurred in HIV-positive patients and the 609 episodes that occurred in immunocompromised HIV-negative patients, we find an equivalent sensitivity of BDG assays compared with molecular methods to diagnose probable/proven PjP, in a first-line strategy. Furthermore, BDG assay can be used confidently to distinguish between infected and colonized patients using a 80 pg/mL cut-off. Finally, it is necessary to search for causes of false positivity to increase BDG assay performance. BDG assay represents a valuable adjunctive tool to distinguish between colonization and infection

    Detection of β-D-glucan for the diagnosis of invasive fungal infection in children with hematological malignancy

    No full text
    International audienceObjectives: The ß-D-glucan assay (BDG) has been added to the EORTC/MSG criteria for the diagnosis of invasive fungal infections (IFI), but data from pediatric populations is scarce. The aim of this study was to evaluate performance of BDG in a cohort of hemato-oncological children with hematological malignancy at risk for IFI.Methods: 113 patients were included through an 18-month period. In addition to routine IFI screening, BDG was assayed once a week. IFIs were classified using EORTC/MSG criteria without including the BDG results. Performances were assessed after a ROC analysis for optimization and multivariate analysis to detect the causes of false positivity.Results: 8 proven and 4 probable IFIs, and 7 possible IFIs were diagnosed in 9 and 7 patients, respectively. Sensitivity and specificity increased from 75% and 56% to 100% and 91.1%, respectively when considering the whole population and patients not having received any antifungals prior to the test. Multivariate analysis revealed that being younger than 7, severe colitis/mucositis, recent administration of polyvalent immunoglobulins and digestive colonization with Enterococcus sp were independent risk factors for false positivity.Conclusions: BDG is a valuable test to detect IFI in pediatric patients not previously treated with antifungals and to detect the occurrence of chronic infection

    Failure of multiplex meningitis/encephalitis (ME) NAT during cryptococcal meningitis in solid organ recipients

    No full text
    International audienceCryptococcal meningitis is a severe cause of central nervous system infections among immunocompromised solid organ transplant (SOT) patients. While new diagnostic methods as multiplex meningitis/encephalitis (ME) NAT (nucleic acid test) are increasingly used as a first‐line tool in hospital practice, data in HIV‐negative patients including SOT remain scarce. We report here false‐negative results of multiplex NAT among SOT patients with proven cryptococcal meningitis

    Systemic anti-commensal response to fungi analyzed by flow cytometry is related to gut mycobiome ecology

    No full text
    International audienceBackground:Interest for the study of gut mycobiota in relation with human health and immune homeostasis has increased in the last years. From this perspective, new tools to study the immune/fungal interface are warranted. Systemic humoral immune responses could reflect the dynamic relationships between gut mycobiota and immunity. Using a novel flow cytometry technology (Fungi-Flow) to determine immunoglobulin (Ig) responses to fungi, we studied the relationships between gut mycobiota and systemic humoral anti-commensal immunity. Results: The Fungi-Flow method allows a sensitive and specific measurement of systemic IgG responses against 17 commensal and environmental fungi from the two main divisions; Ascomycota and Basidiomycota. IgG responses exhibited a high inter-individual variability. Anti-commensal IgG responses were contrasted with the relative abundance, alpha-diversity, and intra-genus richness of fungal species in gut mycobiota of twenty healthy donors. Categorization of gut mycobiota composition revealed two differentiated fungal ecosystems. Significant difference of anti-Saccharomyces systemic IgG responses were observed in healthy donors stratified according to the fungal ecosystem colonizing their gut. A positive and significant correlation was observed between the variety of IgG responses against fungal commensals and intestinal alpha-diversity. At the level of intra-genus species richness, intense IgG responses were associated with a low intra-genus richness for known pathobionts, but not commensals. Conclusions: Fungi-Flow allows an easy and reliable measure of personalized humoral responses against commensal fungi. Combining sequencing technology with our novel Fungi-Flow immunological method, we propose that there are at least two defined ecosystems in the human gut mycobiome associated with systemic humoral responses. Fungi-Flow opens new opportunities to improve our knowledge about the impact of mycobiota in humoral anti-commensal immunity and homeostasis

    Evaluation of two commercial kits and two laboratory-developed qPCR assays compared to LAMP for molecular diagnosis of malaria

    No full text
    International audienceAbstract Background Malaria is an infectious disease considered as one of the biggest causes of mortality in endemic areas. This life-threatening disease needs to be quickly diagnosed and treated. The standard diagnostic tools recommended by the World Health Organization are thick blood smears microscopy and immuno-chromatographic rapid diagnostic tests. However, these methods lack sensitivity especially in cases of low parasitaemia and non-falciparum infections. Therefore, the need for more accurate and reliable diagnostic tools, such as real-time polymerase chain reaction based methods which have proven greater sensitivity particularly in the screening of malaria, is prominent. This study was conducted at the French National Malaria Reference Centre to assess sensitivity and specificity of two commercial malaria qPCR kits and two in-house developed qPCRs compared to LAMP. Methods 183 blood samples received for expertise at the FNMRC were included in this study and were subjected to four different qPCR methods: the Biosynex Ampliquick ® Malaria test, the BioEvolution Plasmodium Typage test, the in-house HRM and the in-house TaqMan qPCRs. The specificity and sensitivity of each method and their confidence intervals were determined with the LAMP-based assay Alethia® Malaria as the reference for malaria diagnosis. The accuracy of species diagnosis of the Ampliquick ® Malaria test and the two in-house qPCRs was also evaluated using the BioEvolution Plasmodium Typage test as the reference method for species identification. Results The main results showed that when compared to LAMP, a test with excellent diagnostic performances, the two in-house developed qPCRs were the most sensitive (sensitivity at 100% for the in-house TaqMan qPCR and 98.1% for the in-house HRM qPCR), followed by the two commercial kits: the Biosynex Ampliquick ® Malaria test (sensitivity at 97.2%) and the BioEvolution Plasmodium Typage (sensitivity at 95.4%). Additionally, with the in-house qPCRs we were able to confirm a Plasmodium falciparum infection in microscopically negative samples that were not detected by commercial qPCR kits. This demonstrates that the var genes of P. falciparum used in these in-house qPCRs are more reliable targets than the 18S sRNA commonly used in most of the developed qPCR methods for malaria diagnosis. Conclusion Overall, these results accentuate the role molecular methods could play in the screening of malaria. This may represent a helpful tool for other laboratories looking to implement molecular diagnosis methods in their routine analysis, which could be essential for the detection and treatment of malaria carriers and even for the eradication of this disease

    Plasmodium ovale spp dhfr mutations associated with reduced susceptibility to pyrimethamine in sub-Saharan Africa: a retrospective genetic epidemiology and functional study

    No full text
    International audienc

    Performance of Repeated Measures of (1–3)-β-D-Glucan, Mannan Antigen, and Antimannan Antibodies for the Diagnosis of Invasive Candidiasis in ICU Patients: A Preplanned Ancillary Analysis of the EMPIRICUS Randomized Clinical Trial

    No full text
    International audienceBackground. We aimed to assess the prognostic value of repeated measurements of serum (1-3)-β-D-glucan (BDG), mannanantigen (mannan-Ag), and antimannan antibodies (antimannan-Ab) for the occurrence of invasive candidiasis (IC) in a high-risk nonimmunocompromised population. Methods. This was a preplanned ancillary analysis of the EMPIRICUS Randomized Clinical Trial, including nonimmunocompromised critically ill patients with intensive care unit-acquired sepsis, multiple Candida colonization, and multiple organ failure who were exposed to broad-spectrum antibacterial agents. BDG (>80 and >250 pg/mL), mannan-Ag (>125 pg/ mL), and antimannan-Ab (>10 AU) were collected repeatedly. We used cause-specific hazard models. Biomarkers were assessed at baseline in the whole cohort (cohort 1). Baseline covariates and/or repeated measurements and/or increased biomarkers were then studied in the subgroup of patients who were still alive at day 3 and free of IC (cohort 2). Results. Two hundred thirty-four patients were included, and 215 were still alive and free of IC at day 3. IC developed in 27 patients (11.5%), and day 28 mortality was 29.1%. Finally, BDG >80 pg/mL at inclusion was associated with an increased risk of IC (CSHR[IC], 4.67; 95% CI, 1.61-13.5) but not death (CSHR[death], 1.20; 95% CI, 0.71-2.02). Conclusions. Among high-risk patients, a first measurement of BDG >80 pg/mL was strongly associated with the occurrence of IC. Neither a cutoff of 250 pg/mL nor repeated measurements of fungal biomarkers seemed to be useful to predict the occurrence of IC. The cumulative risk of IC in the placebo group if BDG >80 pg/mL was 25.39%, which calls into question the efficacy of empirical therapy in this subgroup
    corecore