864 research outputs found

    Turbidity diagrams of polyanion/polycation complexes in solution as a potential tool to predict the occurrence of polyelectrolyte multilayer deposition.

    Get PDF
    Surface functionalization with polyelectrolyte multilayer films (PEM films) has become very popular owing to its simplicity and versatility. However, even if some research is already available, this field of surface chemistry lacks a systematic knowledge of how the polyelectrolyte structure and solution conditions influence the growth of PEM films. In this investigation, we focus on the possible relationship between turbidity of polycation and polyanion mixtures in solution, and the buildup of PEM films made from the same polyelectrolytes in the same physicochemical conditions, namely pH, temperature and ionic strength. It comes out that for six different polycation/polyanion combinations there is a clear correlation between the turbidity evolution of polycation/polyanion complexes with the salt concentration and the evolution of the film deposition with the same parameter. In this investigation, the complexes in solution were prepared in conditions where the ratio between the number of cationic to anionic groups was close to unity. Even if there is a correlation between turbidity in solution and PEM film deposition, we found some exceptions in the low salt concentration regime. This work is an extension of the preliminary works of Cohen Stuart (D. Kovačević et al. Langmuir 18 (2002) 5607-5612) and Sukishvili et al. (S.A. Sukhishvili, E. Kharlampieva and V. Izumrudov, Macromolecules 39 (2006) 8873-8881).journal articleresearch support, non-u.s. gov't2010 Jun 012010 02 21importe

    Bioaffinity sensor based on nanoarchitectonic films: control of the specific adsorption of proteins through the dual role of an ethylene oxide spacer.

    Get PDF
    The identification and quantification of biomarkers or proteins is a real challenge in allowing the early detection of diseases. The functionalization of the biosensor surface has to be properly designed to prevent nonspecific interactions and to detect the biomolecule of interest specifically. A multilayered nanoarchitecture, based on polyelectrolyte multilayers (PEM) and the sequential immobilization of streptavidin and a biotinylated antibody, was elaborated as a promising platform for the label-free sensing of targeted proteins. We choose ovalbumin as an example. Thanks to the versatility of PEM films, the platform was built on two types of sensor surface and was evaluated using both optical- and viscoelastic-based techniques, namely, optical waveguide lightmode spectroscopy and the quartz crystal microbalance, respectively. A library of biotinylated poly(acrylic acids) (PAAs) was synthesized by grafting biotin moieties at different grafting ratios (GR). The biotin moieties were linked to the PAA chains through ethylene oxide (EO) spacers of different lengths. The adsorption of the PAA-EOn-biotin (GR) layer on a PEM precursor film allows tuning the surface density in biotin and thus the streptavidin adsorption mainly through the grafting ratio. The nonspecific adsorption of serum was reduced and even suppressed depending on the length of the EO arms. We showed that to obtain an antifouling polyelectrolyte the grafting of EO9 or EO19 chains at 25% in GR is sufficient. Thus, the spacer has a dual role: ensuring the antifouling property and allowing the accessibility of biotin moieties. Finally, an optimized platform based on the PAA-EO9-biotin (25%)/streptavidin/biotinylated-antibody architecture was built and demonstrated promising performance as interface architecture for bioaffinity sensing of a targeted protein, in our case, ovalbumin.journal articleresearch support, non-u.s. gov't2013 Jun 182013 02 11importe

    Collagen-based fibrillar multilayer films cross-linked by a natural agent.

    Get PDF
    Surface functionalization plays an important role in the design of biomedical implants, especially when layer forming cells, such as endothelial or epithelial cells, are needed. In this study, we define a novel nanoscale surface coating composed of collagen/alginate polyelectrolyte multilayers and cross-linked for stability with genipin. This buildup follows an exponential growth regime versus the number of deposition cycles with a distinct nanofibrillar structure that is not damaged by the cross-linking step. Stability and cell compatibility of the cross-linked coatings were studied with human umbilical vein endothelial cells. The surface coating can be covered by a monolayer of vascular endothelial cells within 5 days. Genipin cross-linking renders the surface more suitable for cell attachment and proliferation compared to glutaraldehyde (more conventional cross-linker) cross-linked surfaces, where cell clumps in dispersed areas were observed. In summary, it is possible with the defined system to build fibrillar structures with a nanoscale control of film thickness, which would be useful for in vivo applications such as inner lining of lumens for vascular and tracheal implants.journal articleresearch support, non-u.s. gov't2012 Jul 092012 06 13importe

    Effect of the supporting electrolyte anion on the thickness of PSS/PAH multilayer films and on their permeability to an electroactive probe.

    Get PDF
    Quartz crystal microbalance and cyclic voltammetry are used to investigate the influence of the supporting salt of polyelectrolyte solutions on the buildup and the structure of PSS/PAH polyelectrolyte multilayers (PSS: poly(4-styrene sulfonate); PAH: poly(allylamine hydrochloride)). This film constitutes a model polyelectrolyte multilayer system. The supporting electrolytes were sodium salts where the nature of the anion was changed by following the Hofmeister series from cosmotropic to chaotropic anions (F-, Cl-, NO3-, ClO4-). For all the investigated anions, the film thickness increases linearly with the number of deposition steps.Wefind that chaotropic anions lead to larger thickness increments per bilayer during the film buildup than cosmotropic ones, confirming results found on PSS/PDADMA multilayers (PDADMA:poly(diallyldimethylammonium)). Films constituted by more than nine PSS/PAH bilayers are still permeable to hexacyanoferrate(II) ions, Fe(CN)(6)4-, whatever the nature of the supporting salt anion. On the other hand, these films are impermeable to ruthenium(II) hexamine ions, Ru(NH3)(6)2+, after the third PAH layer in the presence of NaF, NaCl, or NaNO3. These results are explained by the presence of an excess of positive charges in the film, which leads to a positive Donnan potential. We find that this potential is more positive when more chaotropic anions are used during the film buildup. We also find that a film constructed in the presence of chaotropic anions swells and becomes more permeable to Fe(CN)(6)4- ions when the film is brought into contact with a solution containing more cosmotropic anions. All our experimental findings can be explained by a strong interaction between chaotropic anions with the NH3+groups of PAH that is equivalent, as far as the multilayer buildup and electrochemical response is concerned, to a deprotonation of PAH as it is observed when the film is constructed at a higher pH. We thus arrive to a coherent explanation of the effect of the nature of the anions of the supporting electrolyte on the polyelectrolyte multilayer. We also find that great care must be taken when investigating polyelectrolyte multilayer films by electrochemical probing because electrochemical reactions involving the probes can appreciably modify the multilayer structure.journal articleresearch support, non-u.s. gov't2009 Feb 17importe

    Polymer multilayer films obtained by electrochemically catalyzed click chemistry.

    Get PDF
    We report the covalent layer-by-layer construction of polyelectrolyte multilayer (PEM) films by using an efficient electrochemically triggered Sharpless click reaction. The click reaction is catalyzed by Cu(I) which is generated in situ from Cu(II) (originating from the dissolution of CuSO(4)) at the electrode constituting the substrate of the film. The film buildup can be controlled by the application of a mild potential inducing the reduction of Cu(II) to Cu(I) in the absence of any reducing agent or any ligand. The experiments were carried out in an electrochemical quartz crystal microbalance cell which allows both to apply a controlled potential on a gold electrode and to follow the mass deposited on the electrode through the quartz crystal microbalance. Poly(acrylic acid) (PAA) modified with either alkyne (PAA(Alk)) or azide (PAA(Az)) functions grafted onto the PAA backbone through ethylene glycol arms were used to build the PEM films. Construction takes place on gold electrodes whose potentials are more negative than a critical value, which lies between -70 and -150 mV vs Ag/AgCl (KCl sat.) reference electrode. The film thickness increment per bilayer appears independent of the applied voltage as long as it is more negative than the critical potential, but it depends upon Cu(II) and polyelectrolyte concentrations in solution and upon the reduction time of Cu(II) during each deposition step. An increase of any of these latter parameters leads to an increase of the mass deposited per layer. For given buildup conditions, the construction levels off after a given number of deposition steps which increases with the Cu(II) concentration and/or the Cu(II) reduction time. A model based on the diffusion of Cu(II) and Cu(I) ions through the film and the dynamics of the polyelectrolyte anchoring on the film, during the reduction period of Cu(II), is proposed to explain the major buildup features.journal articleresearch support, non-u.s. gov't2010 Feb 16importe

    Cyto-mechanoresponsive polyelectrolyte multilayer films.

    Get PDF
    Cell adhesion processes take place through mechanotransduction mechanisms where stretching of proteins results in biological responses. In this work, we present the first cyto-mechanoresponsive surface that mimics such behavior by becoming cell-adhesive through exhibition of arginine-glycine-aspartic acid (RGD) adhesion peptides under stretching. This mechanoresponsive surface is based on polyelectrolyte multilayer films built on a silicone sheet and where RGD-grafted polyelectrolytes are embedded under antifouling phosphorylcholine-grafted polyelectrolytes. The stretching of this film induces an increase in fibroblast cell viability and adhesion.journal articleresearch support, non-u.s. gov't2012 Jan 112011 12 20importe

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Electrochemically Triggered Assembly of Films: A One-Pot Morphogen-Driven Buildup:

    No full text
    Polymers that “click”: A polymer film is obtained by the CuI-catalyzed Sharpless click reaction between two polymers, bearing either azide or alkyne groups, both present simultaneously in a CuII solution (see picture). The CuI morphogen is generated at an electrode by applying an adequate potential. This concept can be extended to supramolecular films formed by coordination complexes
    corecore