889 research outputs found

    Mechanical and Anatomical Properties in Individual Growth Rings of Plantation-Grown Eastern Cottonwood and Loblolly Pine

    Get PDF
    Growth in genetically improved trees under intensive management is so rapid that rotations may be as short as 20 to 30 years. At that age, the trees contain a high proportion of lower quality juvenile wood. Thus, the properties of juvenile wood need to be characterized to effectively use this resource.This study determined relationships between age and mechanical and anatomical properties, the average properties of juvenile and mature wood, the age of demarcation between juvenile and mature wood, and the projected proportions of juvenile and mature wood at various ages in plantation cottonwood and loblolly pine. It also compared projected properties of plantation trees with those published for trees from natural forests.All properties improved markedly with age, up to nearly a tenfold increase in modulus of elasticity of one loblolly pine tree from early juvenile wood to late mature wood. Average mechanical properties of juvenile wood ranged from 47% to 63% of those for mature wood in pine and from 62% to 79% in cottonwood. The age of demarcation between juvenile and mature wood varied by species and property, ranging from 13 to 20 years. At age 40, plantation trees sampled were projected to contain approximately 25% juvenile wood. The mechanical properties of the pine were projected to approximate those of trees from natural forests at 30 to 60 years, depending on property, while those for cottonwood will not achieve comparability

    The language of olfaction

    Get PDF

    The language of touch

    Get PDF

    Distribution And Abundance Of Glucocorticoid And Mineralocorticoid Receptors Throughout The Brain Of The Great Tit (Parus Major)

    Get PDF
    The glucocorticoid stress response, regulated by the hypothalamic-pituitary-adrenal (HPA) axis, enables individuals to cope with stressors through transcriptional effects in cells expressing the appropriate receptors. The two receptors that bind glucocorticoids—the mineralocorticoid receptor (MR) and glucocorticoid receptor (GR)—are present in a variety of vertebrate tissues, but their expression in the brain is especially important. Neural receptor patterns have the potential to integrate multiple behavioral and physiological traits simultaneously, including self-regulation of glucocorticoid secretion through negative feedback processes. In the present work, we quantified the expression of GR and MR mRNA throughout the brain of a female great tit (Parus major), creating a distribution map encompassing 48 regions. This map, the first of its kind for P. major, demonstrated a widespread but not ubiquitous distribution of both receptor types. In the paraventricular nucleus of the hypothalamus (PVN) and the hippocampus (HP)—the two brain regions that we sampled from a total of 25 birds, we found high GR mRNA expression in the former and, unexpectedly, low MR mRNA in the latter. We examined the covariation of MR and GR levels in these two regions and found a strong, positive relationship between MR in the PVN and MR in the HP and a similar trend for GR across these two regions. This correlation supports the idea that hormone pleiotropy may constrain an individual’s behavioral and physiological phenotype. In the female song system, we found moderate GR in hyperstriatum ventrale, pars caudalis (HVC), and moderate MR in robust nucleus of the arcopallium (RA). Understanding intra- and interspecific patterns of glucocorticoid receptor expression can inform us about the behavioral processes (e.g. song learning) that may be sensitive to stress and stimulate future hypotheses concerning the relationships between receptor expression, circulating hormone concentrations and performance traits under selection, including behavior

    Collisional Stripping and Disruption of Super-Earths

    Full text link
    The final stage of planet formation is dominated by collisions between planetary embryos. The dynamics of this stage determine the orbital configuration and the mass and composition of planets in the system. In the solar system, late giant impacts have been proposed for Mercury, Earth, Mars, and Pluto. In the case of Mercury, this giant impact may have significantly altered the bulk composition of the planet. Here we present the results of smoothed particle hydrodynamics simulations of high-velocity (up to ~5 v_esc) collisions between 1 and 10 M_Earth planets of initially terrestrial composition to investigate the end stages of formation of extrasolar super-Earths. As found in previous simulations of collisions between smaller bodies, when collision energies exceed simple merging, giant impacts are divided into two regimes: (1) disruption and (2) hit-and-run (a grazing inelastic collision and projectile escape). Disruption occurs when the impact parameter is near zero, when the projectile mass is small compared to the target, or at extremely high velocities. In the disruption regime, we derive the criteria for catastrophic disruption (when half the total colliding mass is lost), the transition energy between accretion and erosion, and a scaling law for the change in bulk composition (iron-to-silicate ratio) resulting from collisional stripping of a mantle.Comment: 10 pages, 1 table, 4 figures. Accepted for publication in ApJ Letter

    Does response to vagus nerve stimulation for drug-resistant epilepsy differ in patients with and without Lennox–Gastaut syndrome?

    Get PDF
    Introduction: Literature on outcomes of patients with Lennox–Gastaut syndrome (LGS) receiving adjunctive vagus nerve stimulation (VNS) lacks information on seizure types and the time course of therapeutic effects. We have therefore performed what is to our knowledge the largest and most in-depth analysis of the effectiveness of VNS in LGS patients paying special attention to the impact of VNS Therapy on individual seizure types. Methods: The VNS Therapy Outcomes Registry includes over 7000 patients. A propensity score matching method was employed to match patients with LGS to non-LGS patients with drug-resistant epilepsy (DRE). Overall seizure frequencies were assessed prior to implantation and at 3-, 6-, 12-, 18-, and 24-month follow-ups to derive the main study outcomes: response rates and time to first response.Results: A total of 564 LGS patients with sufficient data were identified in the registry and matched 2:1 to 1128 non-LGS patients. Responder rates at 24 months were 57.5% in the LGS group and 61.5% in the non-LGS group. Median seizure frequency reduction at 24 months was 64.3% versus 66.7% in the LGS versus non-LGS group, respectively. In both groups, VNS was most effective at reducing focal aware seizures, “other” seizures, generalized-onset non-motor seizures, and drop attacks with relative reduction rates for these seizure types at 24 months exceeding 90% in both groups. Time-to-first response did not differ between the groups; however, there was a significantly higher proportion of patients who regressed from bilateral tonic–clonic (BTC) seizure response in the LGS group versus the non-LGS group at 24 months: 22.4% versus 6.7%; p =.015. Conclusions: Although limited by its retrospective design, the study shows that the effectiveness of VNS is comparable in DRE patients with and without LGS; however, LGS patients may be more prone to fluctuating control of BTCs.</p

    Adopting basic principles of the United Nations Academic Impact initiative (UNAI): Can cultural differences be predicted from value orientations and globalization?

    Full text link
    © 2017 Nechtelberger, Renner, Nechtelberger, Supeková, Hadjimarkou, Offurum, Ramalingam, Senft and Redfern. The United Nations Academic Impact (UNAI) Initiative has set forth 10 Basic Principles for higher education. In the present study, a 10 item self-report questionnaire measuring personal endorsement of these principles has been tested by self-report questionnaires with university and post-graduate students from Austria, China, Cyprus, India, Nigeria, and Slovakia (total N = 976, N = 627 female, mean age 24.7 years, s = 5.7). Starting from the assumptions of Moral Foundations Theory (MFT), we expected that personal attitudes toward the UNAI Basic Principles would be predicted by endorsement of various moral foundations as suggested by MFT and by the individual's degree of globalization. Whereas for the Austrian, Cypriot, and Nigerian sub- samples this assumption was largely confirmed, for the Chinese, Indian, and Slovak sub- samples only small amounts of the variance could be explained by regression models. All six sub-samples differed substantially with regard to their overall questionnaire responses: by five discriminant functions 83.6% of participants were classified correctly. We conclude that implementation of UNAI principles should adhere closely to the cultural requirements of the respective society and, where necessary should be accompanied by thorough informational campaigns about UN educational goals

    Studies of the stability, nucleophilic substitution reactions, DNA/BSA interactions, cytotoxic activity, DFT and molecular docking of some tetra- and penta-coordinated gold(iii) complexes

    Get PDF
    Two gold(III) complexes, square-planar [Au(DPP)Cl2]+(1) and distorted square-pyramidal [Au(DMP)Cl3] (2) (where DMP = 2,9-dimethyl-1,10-phenanthroline and DPP = 4,7-diphenyl-1,10-phenanthroline), were studied by different experimental methods. Their stability in water and in buffer solution (25 mM Hepes, 30 mM NaCl, pH = 7.2) was investigated by UV-Vis spectroscopy while their redox stability is confirmed by CV. Substitution reactions between complexes 1 and 2, and biologically relevant ligands, such as thiourea (Tu), guanosine-5′-monophosphate (5′-GMP), glutathione (GSH) and L-methionine (L-Met), were studied by a stopped-flow technique, under the pseudo-first order conditions as a function of ligand concentration and temperature. According to the values of the activation parameters, all studied reactions followed an associative substitution mechanism. DNA binding studies of complexes 1 and 2 were performed by UV-Vis and fluorescence spectroscopy and viscosity measurements, as well as interactions with bovine serum albumin (BSA). Density functional theory (DFT) was implemented in order to analyse the wave function of the optimized structures to get better insight into the binding interactions between the inert ligands and gold(III) center. The experimental results of binding studies with DNA and BSA were simulated and compared by performing a molecular docking study. All results demonstrate the strong connection between the reactivity of the complexes toward biologically important targets and their structural and electronic characteristics. The cytotoxic activity of complexes 1 and 2 against different cell lines (MDA-MB-231, HCT-116, and HaCaT) was evaluated 24 and 72 h after treatments. The results indicate reduced viability of cell lines in a time- and dose-dependent manner.Accepted for publishin
    corecore