261 research outputs found

    Implementing and testing a new variant of IDRstab

    Get PDF

    Continuously varying skin potentials elicited by sinusoidally varying electric shock potentials

    Get PDF
    An investigation was carried out to determine whether a form of quasi-linear systems analysis can be applied to electrodormal responses to yield new insights into the nature of the response mechanisms and their interrelationships. The response investigated was the electrodermal response (galvanic skin potential, GSP) as elicited by an electric shock stimulus applied to the skin. The response subsequent to this stimulation was examined and its characteristics measured. A series of experimental runs on three Ss was accomplished, using sinusoidal modulation envelopes of frequencies. Results showed that it was possible to drive the GSP and to achieve relatively high coherence between the driving frequency and the response itself. The analysis was limited to Fourier analysis of the response in order to determine the relative energies at the driving frequency and at successive harmonics of that driving frequency, and correlational analysis in order to determine the degree of linear relationship between the driving frequency and the driven response

    An investigation of the visual sampling behaviour of human observers

    Get PDF
    Visual sampling behavior of human observers for aerospace vehicle design application

    At least some errors are randomly generated (Freud was wrong)

    Get PDF
    An experiment was carried out to expose something about human error generating mechanisms. In the context of the experiment, an error was made when a subject pressed the wrong key on a computer keyboard or pressed no key at all in the time allotted. These might be considered, respectively, errors of substitution and errors of omission. Each of seven subjects saw a sequence of three digital numbers, made an easily learned binary judgement about each, and was to press the appropriate one of two keys. Each session consisted of 1,000 presentations of randomly permuted, fixed numbers broken into 10 blocks of 100. One of two keys should have been pressed within one second of the onset of each stimulus. These data were subjected to statistical analyses in order to probe the nature of the error generating mechanisms. Goodness of fit tests for a Poisson distribution for the number of errors per 50 trial interval and for an exponential distribution of the length of the intervals between errors were carried out. There is evidence for an endogenous mechanism that may best be described as a random error generator. Furthermore, an item analysis of the number of errors produced per stimulus suggests the existence of a second mechanism operating on task driven factors producing exogenous errors. Some errors, at least, are the result of constant probability generating mechanisms with error rate idiosyncratically determined for each subject

    Human visual sampling processes - A simulation validation study

    Get PDF
    Pilots and flight simulator used in study of human visual sampling stud

    Differential Growth Factor Adsorption to Calvarial Osteoblast-Secreted Extracellular Matrices Instructs Osteoblastic Behavior

    Get PDF
    Craniosynostosis (CS), the premature ossification of cranial sutures, is attributed to increased osteogenic potential of resident osteoblasts, yet the contribution of the surrounding extracellular matrix (ECM) on osteogenic differentiation is unclear. The osteoblast-secreted ECM provides binding sites for cellular adhesion and regulates the transport and signaling of osteoinductive factors secreted by the underlying dura mater. The binding affinity of each osteoinductive factor for the ECM may amplify or mute its relative effect, thus contributing to the rate of suture fusion. The purpose of this paper was to examine the role of ECM composition derived from calvarial osteoblasts on protein binding and its resultant effect on cell phenotype. We hypothesized that potent osteoinductive proteins present during sutural fusion (e.g., bone morphogenetic protein-2 (BMP-2) and transforming growth factor beta-1 (TGF-β1)) would exhibit distinct differences in binding when exposed to ECMs generated by human calvarial osteoblasts from unaffected control individuals (CI) or CS patients. Decellularized ECMs produced by osteoblasts from CI or CS patients were incubated in the presence of BMP-2 or TGF-β1, and the affinity of each protein was analyzed. The contribution of ECM composition to protein binding was interrogated by enzymatically modulating proteoglycan content within the ECM. BMP-2 had a similar binding affinity for each ECM, while TGF-β1 had a greater affinity for ECMs produced by osteoblasts from CI compared to CS patients. Enzymatic treatment of ECMs reduced protein binding. CS osteoblasts cultured on enzymatically-treated ECMs secreted by osteoblasts from CI patients in the presence of BMP-2 exhibited impaired osteogenic differentiation compared to cells on untreated ECMs. These data demonstrate the importance of protein binding to cell-secreted ECMs and confirm that protein-ECM interactions have an important role in directing osteoblastic differentiation of calvarial osteoblasts

    Behavioural compensation by drivers of a simulator when using a vision enhancement system

    Get PDF
    Technological progress is suggesting dramatic changes to the tasks of the driver, with the general aim of making driving environment safer. Before any of these technologies are implemented, empirical research is required to establish if these devices do, in fact, bring about the anticipated improvements. Initially, at least, simulated driving environments offer a means of conducting this research. The study reported here concentrates on the application of a vision enhancement (VE) system within the risk homeostasis paradigm. It was anticipated, in line with risk homeostasis theory, that drivers would compensate for the reduction in risk by increasing speed. The results support the hypothesis although, after a simulated failure of the VE system, drivers did reduce their speed due to reduced confidence in the reliability of the system

    Owl and Lizard: Patterns of Head Pose and Eye Pose in Driver Gaze Classification

    Full text link
    Accurate, robust, inexpensive gaze tracking in the car can help keep a driver safe by facilitating the more effective study of how to improve (1) vehicle interfaces and (2) the design of future Advanced Driver Assistance Systems. In this paper, we estimate head pose and eye pose from monocular video using methods developed extensively in prior work and ask two new interesting questions. First, how much better can we classify driver gaze using head and eye pose versus just using head pose? Second, are there individual-specific gaze strategies that strongly correlate with how much gaze classification improves with the addition of eye pose information? We answer these questions by evaluating data drawn from an on-road study of 40 drivers. The main insight of the paper is conveyed through the analogy of an "owl" and "lizard" which describes the degree to which the eyes and the head move when shifting gaze. When the head moves a lot ("owl"), not much classification improvement is attained by estimating eye pose on top of head pose. On the other hand, when the head stays still and only the eyes move ("lizard"), classification accuracy increases significantly from adding in eye pose. We characterize how that accuracy varies between people, gaze strategies, and gaze regions.Comment: Accepted for Publication in IET Computer Vision. arXiv admin note: text overlap with arXiv:1507.0476

    Agents for fluorescence-guided glioma surgery: a systematic review of preclinical and clinical results

    Get PDF
    Background: Fluorescence-guided surgery (FGS) is a technique used to enhance visualization of tumor margins in order to increase the extent of tumor resection in glioma surgery. In this paper, we systematically review all clinically tested fluorescent agents for application in FGS for glioma and all preclinically tested agents with the potential for FGS for glioma. Methods: We searched the PubMed and Embase databases for all potentially relevant studies through March 2016. We assessed fluorescent agents by the following outcomes: rate of gross total resection (GTR), overall and progression-free survival, sensitivity and specificity in discriminating tumor and healthy brain tissue, tumor-to-normal ratio of fluorescent signal, and incidence of adverse events. Results: The search strategy resulted in 2155 articles that were screened by titles and abstracts. After full-text screening, 105 articles fulfilled the inclusion criteria evaluating the following fluorescent agents: 5-aminolevulinic acid (5-ALA) (44 studies, including three randomized control trials), fluorescein (11), indocyanine green (five), hypericin (two), 5-aminofluorescein-human serum albumin (one), endogenous fluorophores (nine) and fluorescent agents in a pre-clinical testing phase (30). Three meta-analyses were also identified. Conclusions: 5-ALA is the only fluorescent agent that has been tested in a randomized controlled trial and results in an improvement of GTR and progression-free survival in high-grade gliomas. Observational cohort studies and case series suggest similar outcomes for FGS using fluorescein. Molecular targeting agents (e.g., fluorophore/nanoparticle labeled with anti-EGFR antibodies) are still in the pre-clinical phase, but offer promising results and may be valuable future alternatives
    • …
    corecore