
 Eindhoven University of Technology

BACHELOR

Implementing and testing a new variant of IDRstab

Senders, Mischa J.

Award date:
2019

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/39ee28b8-bfd8-4063-91b3-4b4e73d5e249

Eindhoven University of Technology

– Implementing and testing a new variant of IDRstab

–

Eindhoven, July 11, 2019

Supervisor: dr.ir. J. (Jan) van Dijk
Direct Supervisor: ir. C.E.M. (Chris) Schoutrop

M.J.Senders 0945467

Abstract

Krylov subspace methods are a common way to approximate large linear systems. The aim of this report is
to build a new version of the Krylov algorithm IDRstab in MATLAB and test its performance for various
test cases. It becomes clear that the algorithm is not fully replicated because the SHERMAN5 matrix,
which has been solved using this algorithm before, could not be solved by this specific implementation.
The impact of the two free parameters of IDRstab L and S was analysed as well as the importance of the
condition number and eigenvalues of the matrix A. The IDRstab implementation could not keep up with
the convergence speed of alternative Krylov algorithms such as Bicgstab for any of the test cases discussed
in this report. This is probably because of errors remaining in the algorithm and the lack of optimisation
which causes the algorithm to do a lot of unnecessary work. The algorithm did however come quite close
to a few alternatives for some test , so after optimisation it is plausible that it outperforms other Krylov
algorithms in certain situations.

Contents

1 Introduction 2

2 Theory 3
2.1 Machine precision and rounding errors . 3
2.2 Condition number . 4
2.3 Krylov subspaces . 5
2.4 Known algorithms . 5

2.4.1 Local minimum residual (LMR) . 6
2.4.2 GMRES . 6
2.4.3 Bicgstab . 6
2.4.4 IDR(s) . 6

2.5 IDR(S)Stab(L) . 7
2.5.1 Algorithm description . 7
2.5.2 The significance of L and S . 7
2.5.3 Example: A specific linear system . 8

2.6 Eigenvalues . 8
2.7 Application to physical problems . 9

3 Results 11
3.1 Test case specification . 11
3.2 Results dense matrices . 12

3.2.1 Condition number . 12
3.2.2 The significance of L and S . 15

3.3 Results sparse matrices . 16
3.3.1 SHERMAN matrices . 16
3.3.2 Eigenvalues . 16

4 Discussion 18
4.1 The implementation of the algorithm . 18
4.2 Relevance of the results . 18

5 Conclusion 19

6 Outlook 20
6.1 Improve the algorithm. 20
6.2 More test cases by using of statistics . 20
6.3 A connection to physics. 20
6.4 Comparison to original IDRstab implementation . 21

1

1 Introduction

Linear equations show up almost everywhere in science and economics. Examples are Leontiefs input-
output model, which is a model from macroeconomics describing the relationship between supply and
demand [1] or the state of an electron from quantum mechanics [2]. Linear systems are also important in
many fields of mathematics such as multi-variable calculus differential equations [3].

Differential equations of dynamical systems from fields such as economics and physics can be approximated
numerically by solving the system on a discrete number of points sometimes called a mesh. The more
points you use, the more accurate your solution will be. These numerical solutions can be put in an
equation of the form A~x = ~b where ~x is unknown. Mathematically ~x can be found in several ways. For
example by multiplying both sides from the left by A−1. When the size of A becomes very large, finding
A−1 becomes impractical. A better alternative is to invert a matrix using LU decomposition which
factors the matrix in a lower and upper triangular matrix [4]. For large matrices this method is still very
expensive, however. This is why over the years many algorithms have been developed to approximate ~x
iteratively.

A popular family of approximation techniques is called Krylov subspace methods. Krylov methods have
become very successful and are perhaps the most important tool nowadays to solve the equation A~x = ~b
[5]. One of these Krylov methods named IDR (induced dimension reduction) has recently gotten new
attention with the introduction of IDRstab [6] [7]. In this report we implement a relatively new variant of
IDRstab, algorithm 1 in reference [8], in MATLAB and compare its performance to other popular Krylov
algorithms for several test cases. This new variant on IDRstab is very promising since it has already
solved many problems much faster than other algorithms. The test cases specified in section 3.1 are
divided into dense matrices (section 3.2) and sparse matrices (section 3.3). Furthermore the convergence
speed of various Krylov algorithms is compared and we discuss briefly the importance of the condition
number and eigenvalues on the convergence.

In section 2 we provide the reader with some theoretical background without fully deriving any of the
Krylov algorithms. For full derivations we refer the reader to the sources provided with the particular
topic. Instead we attempt to give the reader a general understanding about what is actually going on
by describing the working principles of various different Krylov algorithms. Test cases can be found in
sections 3.2 and 3.3. A detailed reflection of the test cases and improvements to the algorithm can be
found in section 4.

2

2 Theory

Solving the system A~x = ~b for ~x where A is a matrix and ~x and ~b are vectors can be done in exact
arithmetic in many ways. For example by multiplying both sides of the equation by A−1 or by using LU
decomposition. These strategies are no longer viable, however, when the matrix A becomes very large.
The computational complexity of matrix inversion is in the best case for dense matrices in the order
O(n2.373) [9]. This is called the Copperschmith-Winograd barrier. This becomes very time consuming
for matrices of order O(106) and larger. Such systems are therefore often approximated by iterative
methods.

A common and rather successful way of approximating the solution of such systems is by using Krylov
subspaces. Reference [10] contains a neat example which was originally published in reference [11] showing
how much faster Krylov methods can be compared to direct methods. The example contains a system
of equations with approximately five billion unknowns. According to their estimations, it would take
a computer over half a million years to find the solution to this system of equations whilst the Krylov
method conjugate gradients could do it in 575 seconds. The relative difference is in the order O(1010)
seconds. This example is obviously rather artificial but the point still holds: Krylov methods can be
astronomically faster than direct methods when used in the right situation.

2.1 Machine precision and rounding errors

When we use computers to do arithmetic, we should be careful of rounding errors. When a very small
number gets added to a very large number the computer will round the very small number off to 0. We
will illustrate this by showing how a computer would tackle a simple Gram-Schmidt orthogonalisation
example. Gram-Schmidt orthogonalisation is also an important concept in Krylov analysis. As explained
in reference [12], Gram-Schmidt orthogonalisation works by removing the projections of every next vector
from the first vector. This leads to an orthogonal set of vectors. Equation 2.1 shows the general procedure
to find the Gram-Schmidt vectors ~ui out of a random set of n vectors ~vi. An orthonormal set can easily
be acquired by normalising all the orthogonal Gram-Schmidt vectors afterwards.

~ui = ~vi −
n∑
i=2

~vi · ~ui
~ui · ~ui

~ui (2.1)

It is interesting what happens when rounding errors occur in these vectors. You might expect that
for small rounding errors the resulting set of vectors will also slightly deviate from orthonormality.
Unfortunately, this is not what we observe. This is illustrated in the following example:

Suppose we have an ε such that 1 + ε = 1 in finite precision arithmetic. Suppose we want to make three
orthonormal basis vectors ~u1, ~u2 and ~u3 from three vectors:

~v1 =

1
ε
0
0

 , ~v2 =

1
0
ε
0

 , ~v3 =

1
0
0
ε

.

This means that the first basisvector becomes:

~u1 =
~v1
‖~v1‖

=
1√

1 + ε2

1
ε
0
0

 =

1
ε
0
0

 . (2.2)

This is because the computer cannot distinguish 1 + ε = 1 and 1. The second basisvector becomes:

3

~u2 = ~v2 − (~v2 · ~v1) ~u1 =

0
−ε
ε
0

 . (2.3)

Normalising ~u2 gives:

~u2 =

0
− 1√

2
1√
2

0

 . (2.4)

Analogously:

~u3 =

0
− 1√

2

0
1√
2

 (2.5)

Since our vectors are supposed to be orthonormal, we expect the dot products of the computed vectors
to be 0 or in the order ε. When we now compute the dot products we find that the dot products of ~u1
with ~u2 and ~u3 are in the order of ε and therefore nearly zero as expected. However, the dot product
of ~u2 with ~u3 gives us 1

2 which means that these vectors are clearly not orthogonal. This shows that
even tiny numerical offsets can lead to completely ill-defined systems. When the projection of vector ~v is
slightly off due to rounding errors, the direction is completely off because this new vector is very small
compared to the first vector. Since these projections are very tiny vectors, minor absolute errors lead to
very large relative errors which are scaled up to completely wrong unit vectors in the normalisation step.
It is clear that we have to be smarter than simple Gram-Schmidt orthogonalisation. An example of a
smarter method is called Modified Gram-Schmidt procedure and is further discussed in section 2.3.

2.2 Condition number

The condition number of a matrix is a measure of how well defined a matrix is [12]. The order of the
condition number is roughly the number of significant digits lost in the answer. A large condition number
therefore corresponds to an ill-defined matrix leading to large numerical errors. This means that we
can expect to be able to solve a matrix with a very low condition number very accurately, since we do
not lose many significant digits, whilst solving a matrix with a very high condition number can be very
inaccurate. Two important factors in the condition number are the linear dependence and the scaling of
the columns. Very linearly independent columns of similar scale will lead to a very low condition number.
On the contrary, very linearly dependent columns of different scales will lead to a very high condition
number. The condition number of a matrix A is defined as [12]:

k(A)
def
= ‖A‖

∥∥A−1∥∥ (2.6)

.

Where the norm of the matrix is defined as the sum of the elements of the largest row. The maximum
error in ~x can be determined as a function of the condition number and the maximum error in ~b according
to equation 2.7. It is clear that when the condition number is relatively high, a small relative error in ~b
can cause a large relative error in ~x.

‖δ~x‖
‖~x‖

≤ k(A)

∥∥∥δ~b∥∥∥∥∥∥~b∥∥∥ (2.7)

4

Krylov methods are usually only competitive for sparse matrices but for dense matrices Krylov can still be
competitive if the condition number is smaller than n2 where n is the size of the matrix [10]. A common
way to generate matrices with a good condition number is by adding a multiple of the identity matrix to
a random matrix. This will make the columns generally more linearly independent and this will help
stabilising the projections that most iterative algorithms use. The identity matrix has a condition number
of 1 while for very bad matrices the condition number can go up towards infinity.

Just like most things in numerical analysis, the condition number can only give an indication of the
precision and speed of convergence. Relatively ”bad” matrices can sometimes converge surprisingly well
whilst ”good” matrices can converge rather poorly [5].

2.3 Krylov subspaces

The columns of a non-singular square matrix of dimension n span a n-dimensional space. The solution to
the initial equation A~x = ~b must lie in this vector space. The main idea of the Krylov subspace method
is to solve for the projection of ~x in a subspace of dimension m < n. This is analogous to approximating
the shape of a 3-dimensional object by looking at its shadow on a 2-dimensional plane.

A Krylov subspace is formed by repeatedly multiplying a vector by the same matrix. Every next vector
is guaranteed to introduce a new dimension (as long as m < n) by a process called the power iteration
method or power method [7]. The Krylov subspace of matrix A and ~v is defined as:

κ(A, ~v)
def
= span{Am−1~v, ...,A~v,~v} (2.8)

The issue with this method is that every next vector will become increasingly parallel to the dominant
eigenvector of the matrix such that after a few iterations, the computer can no longer distinguish the
newly introduced dimensions. Unfortunately, defining all vectors first and orthonormalising afterwards
does not work, since you will be orthonormalising an already ill-defined system [13]. A common way of
dealing with this issue is by using the Arnoldi orthogonalisation process, which orthonormalises every
new vector to the set of all previous vectors after every iteration by using the modified gram-Schmidt
method. A variant of the Arnoldi algorithm can be found in appendix C.

2.4 Known algorithms

There are four fundamental Krylov subspace approaches [10]. Three of those are relevant for our purposes.
The first is called the Ritz-Galerkin approach. In the Ritz-Galerkin approach every next residual is
orthogonal to a growing subspace. This implies that the components of the residual in the current
subspace are zero such that the components of ~x which correspond to the current basis are exactly correct.
This method gives rise to algorithms such as Bicg and Bicgstab.

The second approach is the minimum norm residual approach. This method is based on the least squares

approximation. A basis is chosen such that
∥∥∥~b−A~x

∥∥∥ is minimum in the current Krylov subspace. This

method gives rise to algorithms such as GMRES.

The third is called the Petrov-Galerkin approach. The Petrov-Galerkin approach forces the residual
in a specific subspace of which the dimension decreases. You can also view it as the residual being
forced to be orthogonal to a subspace of increasing size. Both views are mathematically equivalent. The
Petrov-Galerkin approach gives rise to algorithms such as IDR.

The fourth method is called the minimum norm error approach. This method minimises ‖ ~xk − ~x‖ but
this method is not used in this report. The following sections describe some of the most common Krylov
methods and their differences.

5

2.4.1 Local minimum residual (LMR)

One of the simplest Krylov subspace methods is called the local minimum residual approach. It uses
the least squares method to minimise the local residual by tuning the parameter α. This implies that
every iteration, alpha is changed such that the residual is minimum. A full MATLAB version of the local
minimum residual approach can be found in appendix D. The basic steps of LMR are shown below:

while ‖~r‖ ≥ tol do
α = (A~r · ~r)/(A~r · A~r);
~x = ~x+ α~r;
~r = (I− αA)~r;

end

In the first step the α is found that minimises the residual ~r. Then ~x is updated according to this new α.
Finally ~r is updated according to this new α. This process is repeated until the required tolerance is
reached.

2.4.2 GMRES

GMRES calculates the minimum residual in a growing Krylov subspace. Every iteration a new dimension
is introduced by multiplying the previous vector by A. This ensures that the residual can by definition
only decrease such that GMRES is guaranteed to reach the exact solution when all dimensions are checked.
The drawback of this method is that all previous vectors need to be stored for every iteration. At every
iteration the new vector needs to be orthogonalised to a growing number of previous vectors such that
every new iteration is more costly and requires more storage than its predecessors. GMRES is both very
costly and requires lots of memory. GMRES is known to get stuck on so called plateaus because no
attempts are made to look in ”clever directions”[14]. This means that the residual can remain constant
for many iterations if GMRES looks in very inefficient directions. The costs and amount of memory that
GMRES requires can be heavily decreased by doing restarted GMRES which restarts building a set of
vectors after a desired number of iterations. This version is much faster than standard GMRES but no
longer guarantees convergence [15].

2.4.3 Bicgstab

Bicgstab is a combination of two techniques: CGS and LMR [5]. ”CGS” stands for conjugate gradient
squared and works for symmetric problems [12]. Conjugate gradient and conjugate gradient squared
are improved versions of gradient descent. In gradient descent, at every iteration a step is made in the
opposite direction of the gradient such that the gradient decreases until it becomes 0. This next point is
then taken as the new trial solution [16]. A common problem with this method is that it tends to bypass
the solution at every iteration leading to a kind of zigzag pattern. The conjugate gradient method is
somewhat better than gradient descent but still experiences unexpected peaks in the residual against time
graph [15]. ”stab” stands for stabilising since stabilising polynomials are used at every iteration. The
stabilising polynomials step is similar to a LMR step which has already been discussed in section 2.4.1.
This attempts to smooth the convergence which is especially effective in case CGS experiences irregular
convergence. Because CGS squares the polynomials, rounding errors tend to build up. In that case the
residuals tend to become very inaccurate. The LMR step is an effective way to avoid this problem.

2.4.4 IDR(s)

Induced dimension reduction (IDR(s)) is a different type of Krylov algorithm which generates residuals
that are forced into a subspaces gk which decreases over time. Initially, the obvious subspace of choice is
the entire Krylov subspace but this space is reduced during the algorithm. Bicgstab and IDR are closely
related. IDR(1) for example is mathematically identical to Bi-cgstab [7].

6

2.5 IDR(S)Stab(L)

IDR(S)Stab(L), to which we will from now on refer to as ”IDRstab”, is a combination of the IDR(S)
algorithm explained in section 2.4.4 and the stabilising polynomials explained in section 2.4.3. This
algorithm is particularly interesting because it has been shown to converge requiring less matrix-vector
multiplications than the other algorithms in many situations. This is illustrated in figure 2.1 which shows
the convergence of IDR(4)Stab(4) for the SHERMAN5 matrix compared to other algorithms. Note that
even though GMRES converges a lot faster, it might not be better because it requires a lot more memory.
Reference [8] introduced a new version of IDRstab. The difference between the new version of IDRstab
and the original one is in the calculation of the residual. Most Krylov algorithms work by estimating
the residual instead of calculating the residual explicitly because this is a rather expensive calculation.
The original IDRstab tends to acquire a relatively large residual gap meaning that its estimation of the
residual does not accurately match the true residual. The new version of IDRstab occasionally decides
to explicitly calculate the true residual making it more effective in moving forward. Since reference [8]
claims that their version of IDRStab is faster than the original, it is definitely a method that deserves
attention.

Figure 2.1: The relative residual of IDRstab for the SHERMAN5 matrix compared to other algorithms as
a function of the number of matrix-vector multiplications [7].

2.5.1 Algorithm description

The specific algorithm is ”algorithm 1” in reference [8]. Even though this algorithm is expected to yield a
better performance, the implementation did not turn out to be straightforward. This will be discussed
in detail in section 4. A comprehensive version of our interpretation of the algorithm can be found in
appendix A where the code is rewritten such that it can easily be translated to any programming language.
A MATLAB version of our interpretation can be found in appendix B.

2.5.2 The significance of L and S

The parameters ”L” and ”S” determine the expensiveness of each iteration. Higher values of L and S
make single iterations more costly but in general also more effective. The cost of these algorithms is
measured by the number of ”AXPYs” (α ∗ ~x+ ~y) and ”MVs” (A~x). L determines how often the IDR
step is executed before a LMR step is taken and S determines how many vectors are constructed in the
IDR step to choose a new search direction. Tests for several values of L and S can be found in section
3.2.2. The amount of AXPYs and MVs per cycle can be found in table 1. It can be seen that the new
algorithm does a couple of extra MVs but saves on the AXPYs making it more efficient overall.

7

Table 1: The amount of MVs and AXPYs used by the original variant of IDRStab and for the new
version [8].

Solver MVs AXPYs
original IDRstab L(S + 1) 1

2LS(L+ 1)(S + 1) + L(S2 + 3S + 2)
New IDRstab L(S + 1) + L+ 1 1

2LS(L+ 1)(S + 1) + 3
2L+ S + 1

2

2.5.3 Example: A specific linear system

An interesting way to get more insight in the algorithm is to work through its steps for a 2× 2 matrix.
Obviously the algorithm was not designed to solve such small systems. It is still interesting, however, to
investigate how the algorithm deals with such a small system and which concrete steps it performs to
come to an answer. Let us define:

A =

(
2 1
1 2

)
~b =

(
2
0

)
and ~x0 =

(
0
0

)
is our initial guess vector.

The exact solution for such a small system is easily computed: ~x =

(
4
3
− 2

3

)
.

It must be noted that the auxiliary matrix R0 is chosen to be the identity matrix.

As usual the residual is calculated by: ~r0 = ~b−A~x =

(
2
0

)
.

In the next step the algorithm makes an orthonormal basis using the Arnoldi algorithm. This gives

the orthonormal basis vectors: ~u1 =

(
1
0

)
and ~u2 =

(
0
1

)
. These are stored in the columns of U0. This

corresponds to lines 7 until 16 of the comprehensive description of the algorithm in appendix A. In the
next step the projections of the columns of A on this new basis U0 are stored in the matrix σ. Since U0

is the identity matrix these projections return the matrix A. The algorithm then continues to calculate
σ which corresponds to A−1 which is therefore a trivial solution A−1 is what we needed to determine in
the first place. It turns out that for a very simple system, the algorithm simply computes A−1 with a
detour.

2.6 Eigenvalues

The eigenvalue configuration of the matrix is a common property that influences the convergence of
Krylov algorithms. Algorithms with stabilising polynomials of degree one such as IDR(S) and Bicgstab(1)
often have issues solving systems with large non-real eigenvalues close to the imaginary axis [8]. In these
situations Bicgstab(L) and IDR(s)Stab(L) are expected to outperform algorithms which do not use higher
order polynomials, as long as L is chosen larger than one. Bicgstab is expected to perform well when the
eigenvalues are clustered [15] [10].

The convergence behaviour of GMRES can also be expressed in terms of the eigenvalues as discussed in
reference [17]. To test the influence of eigenvalues on convergence we will use a Toeplitz matrix. Toeplitz
matrices are matrices with certain diagonals filled with same numbers. tri-diagonal matrices are an
example of a Toeplitz matrix if they have a fixed value on all three diagonals. The general tri-diagonal
Toeplitz matrix is shown in equation 2.18.

Toeplitz matrices are very useful thanks to the distribution of their eigenvalues. They can be calculated
using

λk = a+ 2 ∗
√
b ∗ c ∗ cos k∗π

n+1 [18].

8

By choosing b and c small and a large imaginary we can accomplish the large non-real eigenvalues close
to the imaginary axis as discussed before. This has been tested in section 3.3.2.

2.7 Application to physical problems

As explained before Krylov methods are mainly used for sparse matrices. In this section we will introduce
an example in which it becomes clear how a sparse matrix would show up in practice. Let us start with
the differential equation:

d

dx
(Uφ− εdφ

dx
) = S(x) (2.9)

in which Si = S(xi) and ε and U represent advection and diffusion. The exact significance of this equation
is not relevant for our purposes. It is interesting, however, how a differential equation such as this one
could be approximated numerically and why a linear system of equations would actually show up in the
first place.

If U and ε are constant, equation 2.9 simplifies to:

U
dφ

dx
− εd

2φ

dx2
= S(x). (2.10)

Now two approximations are made which allow us to solve this system numerically. These are:

dφ

dx
≈ φi+1 − φi−1

i∆x
(2.11)

and

d2φ

dx2
=
φi+1 − 2φi + φi−1

(∆x)2
(2.12)

These approximations can be used in equation 2.10 giving:

1

2
U(φi+1 − φi−1)− ε

∆x
(φi+1 − 2φi + φi−1) = ∆xSi (2.13)

Factoring gives:

(
1

2
U − ε

∆x
)φi+1 + (

2ε

∆x
)φi + (−1

2
U − ε

∆x
)φi−1 = ∆xSi (2.14)

This equation should now be solved n times for n times or positions. This implies that i goes from 1 to n.
This can be rewritten as a linear system. The matrix consists of three recurring terms. a, b and c are
defined as follows:

a
def
=

2ε

∆x
(2.15)

b
def
=

1

2
U − ε

∆x
(2.16)

c
def
= −1

2
U − ε

∆x
(2.17)

9

In terms of a, b and c the set of linear equations would look like this:

a 0 0 · · · · · · · · · · · · 0

b a c
. . .

...

0 b
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . . c 0

...
. . . b a c

0 · · · · · · · · · · · · 0 0 a

∗

φ1
...

φi−2
φi−1
φi
φi+1

φi+2

...
φn

=

S1

...
Si−2
Si−1
Si
Si+1

Si+2

...
Sn

(2.18)

As shown in equation 2.18 this leads to a set of linear equations involving a sparse matrix which can be
solved using Krylov methods. It has to be noted that this specific tri-diagonal matrix can also be solved
very easily by the Thomas algorithm [19]. Krylov methods are therefore not needed to solve this particular
problem. The above is merely an example of how sparse matrices could arise from problems in physics.
More complicated matrices with similar structure would arise when more dimensions are introduced or
when the approximations such as 2.11 become more sophisticated. An example of discretisation of a
problem from fluid dynamics can be found in reference [20]. Finally it has to be noted that a ”c” seems
to be missing on the first row and a ”b” seems to be missing on the last row. This is done to satisfy the
boundary conditions. Since equation 2.9 is a second order differential equation, the general solution has
two free parameters which can be determined by the boundary conditions of the specific problem.

10

3 Results

3.1 Test case specification

In this section special test cases are discussed. This ensures the reproducibility of the results. The tests
are done using matlab2019 running the code in appendix B. Rng(1) is used in all tests. Random elements
are defined in the order that can be found in appendix A. The initial guess vector ~x is the zero vector.
The tolerance is 10−12. The parameters are L = 2 and S = 4 with a maximum of 100 iterations. A single
iteration is a full cycle through the while loop. All of the above applies to all test cases unless specifically
stated otherwise. The term ”residual” always refers to relative residual which is the norm of the absolute
residual normalised to the norm of vector ~b as shown in equation 3.1.

r
def
=

(
∥∥∥~b−A~x

∥∥∥)∥∥∥~b∥∥∥ (3.1)

Furthermore algorithm 1 from reference [8] is slightly altered. σ tends to become badly conditioned in
the given algorithm so this was avoided by multiplying it by a preconditioning matrix P containing the
inverse of the absolute values of the columns of σ on its diagonal. This rescales the columns of σ such
that the condition number decreases as explained in section 2.2. ~α was calculated with the altered σ and
thereafter multiplied by P again cancelling the overall effect.

11

3.2 Results dense matrices

Krylov methods are generally applied to equations with sparse matrices. They can however be used to
solve dense matrix systems as well. In this section the performance of the algorithm for dense matrices will
be discussed. In section 3.3, the performance of the algorithm for sparse matrices will be discussed.

3.2.1 Condition number

In this section the influence of the condition number of the matrix on solutions will be analysed. First we
check how the condition number changes as a function of the diagonal dominance and as a function of
the size of the matrix. The matrices will be changed using equation 3.2 as a function of ξ.

A = A + ξI (3.2)

All test cases consist of a 10× 10 matrix A and 10× 1 vectors ~b with random elements (according to
rng(1)) and ~x the zero vector. All random elements are in the open interval (0,1). The matrix A is
constructed by the operation A = (A + A′)/2 where A′ is defined as the transpose of A. This operation
makes the matrix A symmetric. As explained in section 2.4.3, some algorithms such as CGS only work for
symmetric matrices. However, IDRstab can also solve non-symmetric matrices [8]. Since the algorithm
did not work as expected we decided to use matrices that are generally considered ”easy” in our test cases.
Figure 3.1 shows how the condition number changes as a function of ξ. It is clear that the condition
number behaves rather chaotically until ξ is around one. After that the condition number decreases
rapidly as a function of ξ.

Figure 3.1: Change of the condition number as a function of the ξ

In figure 3.2 it is clear that the algorithm cannot solve the system at all if the diagonal does not receive a
slight addition. The residual seems to slowly go towards infinity. The condition number of this matrix is
104.9. This is why a multiple of the identity matrix is added to matrix A as shown in equation 3.2.

In figure 3.3 we can see that the residual already experiences multiple spikes downwards for the case
ξ = 0.5. The residual does not quite converge to 10−12 within 100 iterations though. The condition
number of this matrix is 403.3. In figure 3.4 and in figure 3.5 it is clear that the residual converges to
10−12 faster and faster for ξ = 1.2 and ξ = 10 respectively. Their corresponding condition numbers are
33.02 and 1.661 which are much lower as could already be seen in figure 3.1.

To get more insight into the dependence of the diagonal dominance, the number of iterations until
convergence is shown for a matrix of increasing ξ in figure 3.6. It is clear that if ξ = 1 the algorithm does
not converge within the first 100 iterations. Two rather remarkable observations can be made. The first
is that the decrease of necessary iterations happens abruptly. For ξ = 0.7 the algorithm does not converge

12

Figure 3.2: Residual during the first 100
iterations for ξ = 0.

Figure 3.3: Residual during the first 100
iterations for ξ = 0.5.

Figure 3.4: Residual during the first 100
iterations for ξ = 1.2.

Figure 3.5: Residual during the first 100
iterations for ξ = 10.

13

within 100 iterations while for ξ = 1.4 only about 10 iterations are needed. This seems to correlate nicely
with the condition number. As was shown in figure 3.1, ξ = 1 is the critical value at which both the
chaotic behaviour of the condition number seems to stop because the condition number rapidly drops
from this point and also the number of iterations until convergence rapidly drops. This implies a very
strong dependence between the condition number of the matrix and the convergence speed. Furthermore,
it is interesting that the graph is very smooth and does not seem to contain any local minima. Perhaps
this is because the step size of 0.1 is too large.

Figure 3.6: Number of iterations needed to achieve the tolerance for an increasing diagonal dominant
random matrix as a function of ξ.

To understand how the required diagonal dominance changes for larger matrices, we looked for the
required diagonal dominance for matrices of different sizes such that the algorithm converges within
10 iterations. The checking was done in intervals of 0.1 so it is mainly intended to get a sense of the
sensitivity rather than to understand the exact process quantitatively. Table 2 shows the required diagonal
dominance for different matrix sizes. These points are plotted in figure 3.7. The plot shows that the
required ξ increases for larger matrices, but no further research was done on this topic. The table suggests
that the algorithm works well when the condition number of the matrix is in the order of 102. We would
expect larger matrices to tolerate higher condition numbers as explained in section 2.2, because Krylov
methods can be competitive with direct methods when the condition number is smaller than n2. It is
possible, however, that 10 iterations is not enough to observe this result. Krylov algorithms can still be
competitive with direct methods since direct methods also take a lot longer than the equivalent of 10
iterations for matrices of this size. Perhaps the algorithm simply needs more iterations to challenge direct
methods. Unfortunately no further experiments were done on this subject.

Table 2: Required diagonal dominance for a matrix with certain dimensions such that the algorithm
converges within 10 iterations.

Matrix dimension Addition on diagonal Condition number

10 x 10 1.2 33.02
50 x 50 3.4 48.49
100 x 100 4.8 71.87
200 x 200 7.8 49.73
500 x 500 13 66.11
1000 x 1000 17.2 119.4

14

Figure 3.7: Number of iterations needed to achieve the tolerance for an increasing value of ξ.

3.2.2 The significance of L and S

As discussed in section 2.5.2, the choice of L and S strongly influences the convergence of the algorithm.
For testing we will use the matrix rand(1000)+17.2*eye(10) from section 3.2.1 and calculate the
convergence for varying L and S. The amount of iterations for varying L and S are illustrated in table
3.

Table 3: Number of iterations to converge to a tolerance of 10−12 for varying L and S.

s L> 1 2 3 4 5 6
1 152 27 25 15 11 9
2 33 19 13 11 9 7
3 575 19 10 8 6 5
4 32 11 8 9 6 6

As expected, higher L and S allow the algorithm to converge in fewer iterations. However, that does not
mean that these are preferable choices because the amount of work for the algorithm increases significantly
too. To see which parameters are optimal, the same measurement is done to determine the running
times. These times as shown in table 4 are the average of 100 measurements. It can be seen that a lot of
combinations take around 0.4 seconds per run. The combination L = 1 and S = 3 proves really bad for
this matrix as can be seen from the remarkably long times in both tables. The reason for this is unclear.
It is usually the result of matrices becoming nearly singular but we could not find proof for this.

Table 4: Time in seconds required to reach a tolerance of 10−12 for varying L and S averaged over 100
measurements.

s L> 1 2 3 4 5 6
1 2.84 0.90 0.42 0.39 0.37 0.37
2 0.48 0.90 0.40 0.42 0.42 0.41
3 4.71 0.51 0.40 0.39 0.40 0.40
4 1.16 0.39 0.40 0.49 0.46 0.50

15

3.3 Results sparse matrices

As we have seen in the previous section, the algorithm cannot solve dense linear systems equations without
adjusting the matrix by adding a multiple of the identity matrix to let the algorithm converge at all. In
this section we will investigate the performance in the case of sparse matrices.

3.3.1 SHERMAN matrices

A common test case for Krylov subspace methods is the SHERMAN5 matrix. The matrix can be found
in reference [21]. The convergence of this matrix in [8] can be seen in figure 3.8.

Figure 3.8: Residual over time for the SHERMAN5 matrix [8].

Unfortunately the MATLAB implementation in appendix B cannot solve the SHERMAN5 matrix vector
equation. A graph of the residual as a function of iterations can be found for L = 2 and S = 4 in figure
3.9. It is clear that the residual eventually diverges. The same happens for different choices of L and S.
This clearly indicates that the algorithm is still not an exact replica of the one in [8]. Potential reasons for
this difference are discussed in the section 4. SHERMAN1, SHERMAN2, SHERMAN3 and SHERMAN4
can also be found in reference [21]. Unfortunately none of these could be solved within 1000 iterations

either. All tests were done using the corresponding ~b.

3.3.2 Eigenvalues

As explained in section 2.6, Toeplitz matrices are very suitable for analysing the impact of the eigenvalues.
In table 5 the times for different matrices with different eigenvalues and their corresponding condition
number can be seen for various algorithms. The eigenvalues of these matrices are shown in table 6 and the
convergence time in table 7. ”Diverge” implies that the algorithm does not converge within 100 iterations.
It is not investigated whether the algorithm requires more iterations or actually diverges.

Table 5: Properties of test matrices.

matrix a b c condition number size
1 50i 10 -10 2.33 106

2 50 10 -10 1.92 106

3 1 10 -10 42.0 106

4 1 100 -100 401 106

5 20 30 -50 2e6 106

16

Figure 3.9: The residual as a function of the number of iterations of our implementation of IDRstab for
the SHERMAN5 matrix.

Table 6: This table shows the range(s) across which the eigenvalues of the test matrices are spread evenly.

matrix Range 1 Range 2
1 0+30i to 0+70i 50-20i to 50+20i
2 50-20 to 50+20i -
3 1-20i to 1+20i -
4 1-200i to 1+200 -
5 20-80i to 20+80i -

Table 7: Time to converge to a residual of 10−12 in seconds. ”NC” means no convergence.

matrix Our implementation Bicgstab Bicgstabl GMRES
1 22.1 1.45 21.0 8.83
2 10.8 0.87 2.567 3.50
3 NC NC NC NC
4 NC NC NC NC
5 NC NC NC NC

It is clear from table 7 that Bicgstab, Bicgstabl and GMRES perform better or equal to our implementation
of IDRstab in all five test cases. Memory requirements are not taken into account. The hypothesis that
Bicgstabl and IDRStab do better for linear systems involving unsymmetric matrices with a complex
spectrum from reference [7] could not be confirmed by this experiment. It is also not taken into account
that the implementation of IDRstab can still be improved significantly. These potential improvements
are discussed in section 4.

17

4 Discussion

4.1 The implementation of the algorithm

As we saw in section 3.3 the implementation of algorithm 1 described in reference [8] cannot solve the
SHERMAN5 system. This means that our algorithm still contains at least one minor error. You might
therefore wonder why we would bother testing a non functional algorithm at all. It turned out however
that there was a lot to learn from testing the algorithm, but first we take look at the reasons why the
results from reference [8] could not be reproduced.

The main issue was that the representation of the algorithm contained a lot of ambiguous statements.
It is not mentioned where the ”if” statements close. The statements from reference [22] from the same
writers was used to determine the ”end if” locations from these preconditioned IDRstab algorithms. This
means that we cannot know with certainty whether all ”end if” statements are in the right place. Apart
from this incompleteness there were also inconsistencies. On line 20 we have to take columns 1 up to q-1
from V. The first time that this statement is reached is when q=1 such that we have to take the first
until the zeroth column. This was interpreted as just skipping this step all together but it is unclear if
this is correct.

The main problem arises at line 19. On the page before the algorithm it is stated that the vector ~u
contains ~u0 up to ~uj . On line 19, ~u is defined such that it contains the vectors ~u1 up to ~uj . Further in
the algorithm we need to take vectors such as ~u1 out of ~u. It is not clear whether we should now take
the first or the second vector from ~u. We can now call the first vector in ~u ~u0 or ~u1 depending on the
definition that we follow. The same can be said for ~u2, ~u3 etc.

Apart from actual mistakes in the algorithm it is also far from optimised. For example, the multiplication
AR0 is performed three times per iteration even though it is constant and can just as easily be cached in
a variable. This particular problem was fixed but no further attempt was made to do more optimisation.
Furthermore every time a part of a matrix or vector had to be used, this was accomplished by the function
which can be found at the bottom of the MATLAB algorithm in appendix B. This function actually makes
unnecessary copies which slows the algorithm down significantly. This could definitely be accomplished in
a more efficient way. It is clear that there is a lot of room for improvement in terms of performance such
that the convergence times found in 3.2 can definitely be reduced by a relevant margin.

4.2 Relevance of the results

Due to what was discussed in the previous section, implementing the algorithm in matlab took a lot
longer than expected. There was therefore not enough of time to test enough test cases to draw very
specific conclusions on the influence of eigenvalues and the condition number, and their influence on the
choice of L and S.

First of all most test problems used to test the algorithm were very artificial. Matrices with random
elements plus a multiple of the identity matrix do not appear in real physical problems. Toeplitz matrices
could appear (see equation 2.18), but the eigenvalues distribution is unlikely to be this smooth. Besides,
the tri-diagonal Toeplitz matrices used in this report could be solved by direct methods a lot faster.

Furthermore not all relevant aspects of the efficiency of the different algorithms were taken into account.
The number of AXPYs and MVs was not used to compare algorithms. In addition, the amount of memory
used was not analysed even though this can impact the performance, especially for very large systems,
significantly.

The MATLAB implementation of IDRstab could not compete with other Krylov algorithms as explained
in section 3.3. There is, however, a lot of room for improvement so IDRstab might be as good as literature
promises [8], but it could not be shown in this report.

18

5 Conclusion

The results from reference [8] could unfortunately not be verified. This implies that the MATLAB
implementation contains one or several flaws. The algorithm was tested for various test cases regardless.
The test cases were divided into dense and sparse matrices. We have seen in section 3.2 that the condition
number seems to have a strong influence on the convergence speed of the algorithm. It turned out that
the condition number was in the order of 102 for all test cases for the algorithm to converge within ten
iterations, despite the very strong dependence of the condition number on the matrix.

The dependence on the choice of L and S on the converging time was also analysed. As shown in table
4 the choice of L and S do not seem to be of great influence for the particular test case. The choice
L = 1 and S = 3 turned out particularly bad. However, one test case is definitely not enough to draw a
convincing conclusion. We can conclude however that many combinations of L and S have the potential
to work well.

In section 3.3 Toeplitz matrices were used to compare the convergence of several Krylov methods in terms
of the eigenvalues. Bicgstab, Bicgstabl and GMRES converged faster than the matlab implementation.
Asymmetric matrices did not converge at all. In these test cases, no dependence on the eigenvalues
distribution was found. The one thing we can take from this section is that our implementation of
IDRstab needs improvements to become competitive with alternative Krylov algorithms. Potential ways
to accomplish these improvements have been discussed in section 4.

To sum up, it is clear that our implementation needs some improvements to become competitive with
other algorithms. Luckily we know that these improvements are possible, so perhaps IDRstab can indeed
compete with or even outperform other Krylov methods. We think that this implementation can work as
a suitable guideline to support further attempts to implement IDRstab.

19

6 Outlook

As the reader might have noticed, not many actual general conclusions could be drawn from the numerical
experiments performed in this report. This section will describe three possible ways forward which
may help future research to accomplish more concrete results. Three possible ways forward are listed
below

6.1 Improve the algorithm.

It is rather trivial that the first way forward would be to improve the performance of the algorithm. This
actually consists of two separate steps. The first one is to fix it in a way such that the results from [8]
can be reproduced. The next step is to optimise the efficiency of the algorithm. This includes saving
parameters that are needed in the future such as the AR0 discussed in section 4, but also avoiding making
unnecessary copies and being clever with shifting smaller vectors in a larger vector or the columns of a
matrix. This new algorithm might just have the properties that we expect but could not quite detect in
the research of this report.

6.2 More test cases by using of statistics

Once the algorithm works, there is a major potential for statistical analysis. Using a clever algorithm,
one could for example produce many Toeplitz matrices, determine the eigenvalues and condition number
and then check the time needed to reach convergence. These could then be compared to other algorithms
in a similar fashion as done in this report. Doing this for a large number of matrices might give more
insight in the importance of properties such as the condition number or eigenvalues. It seems that the
vast amount of relevant properties make this problem very suitable for statistical investigation.

6.3 A connection to physics.

A third interesting option is to take a completely different perspective, for example from physics. Dynamical
systems contain an advection term and a diffusion term which strongly influence the eigenvalues of the
matrix produced from that equation. It is therefore very interesting to see how the advection and diffusion
terms determine the convergence of Krylov algorithms and to specify which algorithms are suitable for
which type of physical system in terms of the physics. Furthermore, the linear systems which arise
from such problems are systems which often require Krylov methods as a solution tool. This means
that it is more natural to use Krylov methods in the first place which gives the analysis a more direct
impact.

20

6.4 Comparison to original IDRstab implementation

Towards the end of this project, a full MATLAB implementation of the original IDRstab was found [23].
In this section we will briefly discuss the performance of this original IDRstab algorithm and compare it
to the performance of our algorithm. Furthermore we will briefly compare the MATLAB code to our
code and use this perspective to find the potential bugs in our code.

The first thing that we tested were matrices of the form tested in section 3.2. This means dense matrices
with random elements. As was shown in section 3.2, our implementation could only solve matrices with a
certain diagonal dominance. The implementation from reference [23] can solve random matrices for ξ = 0
using equation 3.2. Furthermore, the algorithm can solve all the SHERMAN matrices. From all of the
above it should be quite obvious that this implementation is very effective so it is interesting to discuss
some of the differences between the codes.

One important differences that the q-loop, which was very troublesome in our implementation, goes from
2 to S instead of 1 to S. This immediately solves the problem with the columns of V discussed in section
4. Doing this requires a slightly different structure of the loop but it would be interesting to check if a
similar structure can be integrated in the implementation described in this report.

A useful trick to avoid running into trouble with changing matrix and vector sizes during the algorithm is
the use of the statement ”end”, which can be used to select a number of columns or rows from a matrix
or vector up to and including the last one.

Finally, this implementation has not used any preconditioning to the σ matrix. This does not seem so be
an issue however, because even though MATLAB sometimes complains that this matrix becomes nearly
singular, the algorithm still arrives to the right answer.

We think that this implementation can provide as a suitable guideline to critically investigate our
implementation and potentially help further research to find the bug. It proves once again that IDRstab
deserves a lot of attention.

21

References

[1] James J Buckley. Solving fuzzy equations in economics and finance. Fuzzy Sets and Systems, 48(3):
289–296, 1992.

[2] David J Griffiths and Darrell F Schroeter. Introduction to quantum mechanics. Cambridge University
Press, 2018.

[3] Robert A. Adams. Calculus: A Complete Course. Robert A. Adams, jul 2019. ISBN 0321781074.
URL https://www.xarg.org/ref/a/0321781074/.

[4] Saeid Abbasbandy, Reza Ezzati, and Ahmad Jafarian. Lu decomposition method for solving fuzzy
system of linear equations. Applied Mathematics and Computation, 172(1):633–643, 2006.

[5] Yousef Saad. Iterative methods for sparse linear systems, volume 82. siam, 2003.

[6] Martin H Gutknecht. Idr explained. Electronic Transactions on Numerical Analysis, 36(3):126–148,
2010.

[7] Gerard LG Sleijpen and Martin B Van Gijzen. Exploiting bicgstab () strategies to induce dimension
reduction. SIAM journal on scientific computing, 32(5):2687–2709, 2010.

[8] Kensuke Aihara, Kuniyoshi Abe, and Emiko Ishiwata. A variant of idrstab with reliable update
strategies for solving sparse linear systems. Journal of Computational and Applied Mathematics, 259:
244–258, 2014.

[9] V Vassilevska Williams. Breaking the coppersmith-winograd barrier. E-mail address: jml@ math.
tamu. edu, 2011.

[10] Henk A Van der Vorst. Iterative Krylov methods for large linear systems, volume 13. Cambridge
University Press, 2003.

[11] Horst D Simon. Direct sparse matrix methods. Modern Numerical Algorithms for Supercomputers,
pages 325–444, 1989.

[12] Steven J Leon, Ion Bica, and Tiina Hohn. Linear algebra with applications. Macmillan New York,
1980.

[13] R. V. KOHN M. H. WRIGHT P. G. CIARLET, A. ISERLES. Iterative Krylov methods for large
linear systems. TU/e, Eindhoven, 2016.

[14] Homer F Walker. Residual smoothing and peak/plateau behavior in krylov subspace methods.
Applied numerical mathematics, 19(3):279–286, 1995.

[15] Rüdiger Weiss. A theoretical overview of krylov subspace methods. Applied numerical mathematics,
19(3):207–233, 1995.

[16] Parul Pandey. Understanding the mathematics behind gra-
dient descent., 2019. URL https://towardsdatascience.com/

understanding-the-mathematics-behind-gradient-descent-dde5dc9be06e.

[17] Mark Embree. How descriptive are gmres convergence bounds? 1999.

[18] Silvia Noschese, Lionello Pasquini, and Lothar Reichel. Tridiagonal toeplitz matrices: properties and
novel applications. Numerical linear algebra with applications, 20(2):302–326, 2013.

[19] Biswa Nath Datta. Numerical linear algebra and applications, volume 116. Siam, 2010.

[20] C Bailey, GA Taylor, M Cross, and P Chow. Discretisation procedures for multi-physics phenomena.
Journal of Computational and Applied Mathematics, 103(1):3–17, 1999.

[21] matrixmarket. https://math.nist.gov/MatrixMarket/.

[22] Kensuke Aihara, Kuniyoshi Abe, and Emiko Ishiwata. Preconditioned idrstab algorithms for solving
nonsymmetric linear systems. International Journal of Applied Mathematics, 45(3), 2015.

22

https://www.xarg.org/ref/a/0321781074/
https://towardsdatascience.com/understanding-the-mathematics-behind-gradient-descent-dde5dc9be06e
https://towardsdatascience.com/understanding-the-mathematics-behind-gradient-descent-dde5dc9be06e
https://math.nist.gov/MatrixMarket/

[23] R Suidgeest. Recycling techniques for induced dimension reduction methods used for solving large
sparse non-symmetric systems of linear equations. Master’s thesis, 2017.

23

Appendix

A The algorithm

Input matrix A = (n x n).1

Input solution vector b = (n x 1).2

Define initial guess vector x = (n x 1).3

Define matrix R0 = (n x s).4

r0=b-A*x5

r=[r0] for q=1:s6

if q==17

u0=r08

else9

u0=A*u010

mu=U0(:,1:q-1)’*u011

u0=u0-U0(:,1:q-1)*mu12

end if13

u0=u0/norm(u0)14

U0(:,q)=u015

end for16

while norm[r0] > tol17

for j=1:L18

σ = (A’*R0)’*Uj−119

if j==120

α=σ−1 ∗ (R′0 ∗ r0)21

else22

α=σ−1 ∗ ((A′ ∗R0) ∗ rj−2)23

end if24

x = x+ U0 ∗ α25

r0 = r0 −A ∗ (U0 ∗ α)26

for i=1:j-227

ri = ri − Ui+1 ∗ α28

end for29

if j > 130

r = [r;A ∗ rj−2]31

end if32

for q=1:s33

if q==134

u=r35

else36

for k=1:j37

u((k − 1) ∗ n+ 1 : k ∗ n, 1) = uk38

end for39

if length(u)¿j*n40

u(j*n+1:length(u))=[];41

end if42

end if43

β = σ−1 ∗ ((A′ ∗R0)′ ∗ uj−1)44

u = u− U ∗ β45

u = [u;A ∗ u]46

if q > 147

µ = V ′j(:,1:q−1) ∗ uj48

24

u = u− Vj(:,1:q−1) ∗ µ49

end if50

u = u/norm[uj]51

if q==152

V = zeros(1 : length(u), q)53

end if54

V1:length(u),q = u;55

end for56

U=V57

end for58

r = [r;A ∗ rl−1]59

for i=1:L60

rmatrix0(:, i) = ri−161

end for62

for i=1:L63

rmatrix1(:, i) = ri64

end for65

γ = rmatrix1−1 ∗ r066

x = x+ rmatrix0 ∗ γ67

r0 = r0 −A ∗ rmatrix0 ∗ γ68

Umatrix=zeros(n,s)69

for k=1:L70

Umatrix = Umatrix+ Uk ∗ γ(k, 1)71

end for72

U = U0 − Umatrix73

end while74

B IDRstab in MATLAB

1 clear
2 rng(1);
3 n=100;%The dimension of the matrix is n x n.
4 s=4;
5 L=2;%s=4 and l=2 are the standard parameters for IDR(s)Stab(l).
6 tol=1e-12;%This is the tolerance of the method.
7 B=rand(n);
8 A=(B+B')/2+0*eye(n);%This makes A a symmetric matrix of size n x n.
9 b=rand(n,1);%The vector b is a random solution to Ax=b.

10 %x exact=A\b;%This can be used to find the difference between the exact
11 %solution and the solution of the algorithm for matrices that are small
12 %enough to be solved in exact fashion.
13 %{
14 path='C:\Users\s157181\Documents\jaar 4\bep\testmatrices\Sherman\';
15 A=mmread([path,'Sherman2.mtx']);
16

17 disp('Done loading A')
18 b=mmread([path,'sherman2 rhs1.mtx']);
19 disp('Done loading b')
20 %}
21 tic
22 n=size(A,1);
23 x=zeros(n,1);%The first trial solution
24 R0=rand(n,s);
25 R0=orth(R0);
26 U0=rand(n,s);%R0 and U0 are a random auxillary matrices of n x s.
27 r0=b-A*x; %This is the first residual.
28 r=r0;%This is the vector containing all vectors r0...rj in a long vector
29 V=zeros(n,s);

25

30 maxiter=100;
31 AR0=A'*R0;%This operation has been discussed in the discussion.
32

33 %Arnoldi step
34 for q=1:s
35 if q==1
36 u0=r0; %In the first iteration u0 is set to be the initial residual.
37 else
38 u0=A*u0;
39 %In any iteration that isnt the first one, the new u0 is multiplied
40 %by A to introduce a new dimension of the krylov space.
41 mu=U0(:,1:q-1)'*u0;
42 u0=u0-U0(:,1:q-1)*mu;
43 end
44 u0=u0/norm(u0);%This normalises u0.
45 U0(:,q)=u0;%This puts u0 in the qth column of U0.
46 end
47 U=U0; %The columns of U0 and U are ortho-normalised.
48

49 while norm(b-A*x)/norm(b)>tol && maxiter>0
50 r=r(1:n,1);
51 for j=1:L
52 %IDR step
53 sigma=(AR0)'*Outputmatrix(n,j-1,U);%This takes out the j-1the matrix of U. so Outputmatrix(n,1,U) gives U0.
54 P=diag(1./sum(abs(sigma),1));
55 sigma=sigma*P;
56 if j==1
57 alfa=sigma\(R0'*Outputmatrix(n,0,r));
58 else
59 alfa=sigma\((AR0)'*Outputmatrix(n,j-2,r));%The first iteration this else is reached j=2 so we need r0=r(:,1)
60 end
61 alfa=P*alfa;
62 x=x+Outputmatrix(n,0,U)*alfa;
63 r(1:n)=r(1:n)-(A*(Outputmatrix(n,0,U)*alfa));
64

65 for i=1:j-2
66 r((i*n)+1:(i*n)+n)=r((i*n)+1:(i*n)+n)-Outputmatrix(n,i+1,U)*alfa;
67 end
68

69 if j>1
70 r=[r; A*Outputmatrix(n,j-2,r)];
71 end
72

73 for q=1:s
74 if q==1
75 u=r;
76 else
77 for k=1:j
78 u((k-1)*n+1:k*n,1)=Outputmatrix(n,k,u);
79 end
80 if length(u)>j*n%if u is longer than j*n as needed this if statement removes the rows j*n+1 to the final row.
81 u(j*n+1:length(u))=[];
82 end
83 end
84 beta=sigma\((AR0)'*Outputmatrix(n,j-1,u));
85 u=u-U*beta;
86 u=[u; A*Outputmatrix(n,j-1,u)];
87 if q>1
88 Vj=Outputmatrix(n,j,V);
89 mu=Vj(:,1:q-1)'*Outputmatrix(n,j,u);
90 u=u-V(:,1:q-1)*mu;
91 end
92 u=u/norm(Outputmatrix(n,j,u));
93 if q==1
94 V=zeros(length(u),s);
95 end
96 V(1:length(u),q)=u;
97 end
98 U=V;
99 end

26

100 r=[r; A*Outputmatrix(n,L-1,r)];
101 %Polynomial step
102 for i=1:L
103 rmatrix1(:,i)=Outputmatrix(n,i,r);
104 end
105 for i=1:L
106 rmatrix0(:,i)=Outputmatrix(n,i-1,r);
107 end
108 gamma=rmatrix1\Outputmatrix(n,0,r);
109 x=x+rmatrix0*gamma;
110 r(1:n,1)=r(1:n,1)-A*(rmatrix0*gamma);
111 Umatrix=zeros(n,s);
112 for k=1:L
113 Umatrix=Umatrix+Outputmatrix(n,k,U)*gamma(k,1);
114 end
115 U=Outputmatrix(n,0,U)-Umatrix;
116 r1=Outputmatrix(n,1,r);
117 if norm(b-A*x)/norm(b)<tol
118 residue=norm(b-A*x)/norm(b);
119 Z=['the residual is:',num2str(residue),'.'];
120 disp(Z)
121 toc
122 return
123 end
124 if r1==0
125 residue=norm(b-A*x)/norm(b);
126 Z=['the residual is:',num2str(residue),'.'];
127 disp(Z)
128 toc
129 return
130 end
131 maxiter=maxiter-1;
132 end
133 residue=norm(b-A*x)/norm(b);
134 Z=['the residual is:',num2str(residue),'.'];
135 disp(Z)
136 toc
137

138 %This function takes out the n*j+1'th up to the n*j+n'th row(s) from a
139 %matrix or vector.
140 function Output=Outputmatrix(n,j,Input)
141 g=n*j+1;
142 h=n*j+n;
143 Output=Input(g:h,:);
144 end

C Arnoldi algorithm

1 clear
2 m=10;
3 A=rand(m);%This gives a m x m with random entries on the domain (0,1).
4 v1=rand(m,1);
5 v1=v1/norm(v1);%v1 is a random normalised vector.
6 w vectors=zeros(m,m);%This creates a matrix of which the columns will be filled with the vectors w j.
7 v vectors=zeros(m,m);%This creates a matrix of which the columns will be filled with the vectors v j which are the orthonormal Arnoldi vectors.
8 v vectors(:,1)=v1;
9

10 Hmatrix=zeros(m);%This makes the matrix with elements h ij.
11 for j=1:m
12 for i=1:j
13 Hmatrix(i,j)=dot(A*v vectors(:,j),v vectors(:,i));
14 sumseries=zeros(m,1);
15 for i=1:j
16 sumseries(:,1)=sumseries(:,1)+Hmatrix(i,j)*v vectors(:,i);
17 end
18 w vectors(:,j)=A*v vectors(:,j)-sumseries;
19 end

27

20 Hmatrix(j+1,j)=norm(w vectors(:,i));
21 if Hmatrix(j+1,j)==0
22 break
23 else
24 v vectors(:,j+1)=w vectors(:,j)/(Hmatrix(j+1,j));
25 end
26 end
27

28 testmatrix=zeros(m,m);%Testmatrix gives the dot products of all the v vectors. The entries on the diagonal of this matrix are dot products with the vectors with themselves so these entries should be one due to the normalisation. The off-diagonal entries should be zero since the vectors should be orthogonal.
29 for i=1:m
30 for j=1:m
31 testmatrix(i,j)=dot(v vectors(:,i),v vectors(:,j));
32 end
33 end
34 testmatrix

D Local minimum residual approach

1 clear
2 %This algorithm is called local minimum residual.
3 alfa=1;
4 tol=1e-12;
5 n=10;
6 B=rand(n);
7 A=(B+B')/2+100*eye(n);
8 n=size(A,1);
9 b=ones(n,1);

10 x=zeros(n,1);
11 x exact=A\b;
12 r=b-A*x;
13 i=0;
14 count=0;
15 while norm(r)>tol
16 alfa=dot(A*r,r)/dot(A*r,A*r);
17 x=x+alfa*r;
18 r=(eye(n)-alfa*A)*r;
19 count=count+1;
20 if count==100
21 norm(x-x exact)/norm(x exact)
22 return
23 end
24 end
25 norm(x-x exact)/norm(x exact)

28

