
REVIEWARTICLE - NEUROSURGICALTECHNIQUES

Agents for fluorescence-guided glioma surgery: a systematic
review of preclinical and clinical results

Joeky T. Senders1 & Ivo S. Muskens1 & Rosalie Schnoor1 & Aditya V. Karhade2 &

David J. Cote2 & Timothy R. Smith2
& Marike L. D. Broekman1

Received: 21 September 2016 /Accepted: 9 November 2016 /Published online: 22 November 2016
# The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract
Background Fluorescence-guided surgery (FGS) is a tech-
nique used to enhance visualization of tumor margins in order
to increase the extent of tumor resection in glioma surgery. In
this paper, we systematically review all clinically tested fluo-
rescent agents for application in FGS for glioma and all pre-
clinically tested agents with the potential for FGS for glioma.
Methods We searched the PubMed and Embase databases for
all potentially relevant studies through March 2016. We
assessed fluorescent agents by the following outcomes: rate
of gross total resection (GTR), overall and progression-free
survival, sensitivity and specificity in discriminating tumor
and healthy brain tissue, tumor-to-normal ratio of fluorescent
signal, and incidence of adverse events.
Results The search strategy resulted in 2155 articles that were
screened by titles and abstracts. After full-text screening, 105
articles fulfilled the inclusion criteria evaluating the following
fluorescent agents: 5-aminolevulinic acid (5-ALA)
(44 studies, including three randomized control trials), fluo-
rescein (11), indocyanine green (five), hypericin (two), 5-
aminofluorescein-human serum albumin (one), endogenous
fluorophores (nine) and fluorescent agents in a pre-clinical
testing phase (30). Three meta-analyses were also identified.
Conclusions 5-ALA is the only fluorescent agent that has
been tested in a randomized controlled trial and results in an

improvement of GTR and progression-free survival in high-
grade gliomas. Observational cohort studies and case series
suggest similar outcomes for FGS using fluorescein.
Molecular targeting agents (e.g., fluorophore/nanoparticle la-
beled with anti-EGFR antibodies) are still in the pre-clinical
phase, but offer promising results and may be valuable future
alternatives.
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Abbreviations
5-ALA 5-aminolevulinic acid
BBB Blood–brain barrier
EGFR Epidermal growth factor receptor
FGS Fluorescence-guided surgery
GTR Gross total resection
HGG High-grade glioma
ICG Indocyanine green
LGG Low-grade glioma
MRI Magnetic resonance imaging
NIR Near-infrared
PFS Progression-free survival
PpIX Protoporphyrin
QD Quantum dot
TNR Tumor-to-normal ratio

Introduction

Radical surgical resection is the surgical treatment of choice
for gliomas [95, 102]. Balancing maximum cytoreduction
with preservation of healthy brain tissue is complicated by
the infiltrative nature of these tumors [88, 96]. Fluorescent
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agents are increasingly being tested and used to distinguish
tumor from normal parenchyma thus improving surgical re-
section while sparing healthy brain tissue [17, 57, 59, 76, 119].
The only fluorescent agent that has been tested in a multi-
center randomized controlled trial (RCT) and the only agent
currently approved for resection of high-grade gliomas
(HGGs) in Europe, Canada, and Japan is 5-aminolevulinic
acid (5-ALA) [67]. In clinical studies, the use of 5-ALA for
fluorescence-guided surgery (FGS) has been shown to in-
crease the rate of gross-total resection (GTR) and the length
of progression-free survival (PFS) [99]. As a relatively na-
scent innovation, FGS for glioma is still limited by many
factors, which depend on the fluorescent agent used. In this
systematic review, we assess the use of all clinically tested
fluorescent agents in FGS for glioma. Furthermore, we eval-
uate all pre-clinically tested fluorescent agents with the poten-
tial for FGS for glioma.

Methods

Search strategy

We performed an extended search in PubMed and Embase
databases according to the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guide-
lines onMarch 21, 2016.We included all articles investigating

the use of fluorescent agents for identification or resection of
glioma tumor cells in both the clinical and pre-clinical set-
tings. This review is restricted to published literature. Only
papers written in English and Dutch were included. The
search was not limited by date of publication. We did not
include pre-clinical studies on 5-ALA and fluorescein, as
these agents have been used extensively in the clinical setting.
The search syntax is available in Table 1. The systematic
search was complemented by additional citations identified
by hand searching the bibliographies of the papers retrieved
by the electronic search. The title and abstracts of retrieved
studies were screened, and full texts of potentially suitable
articles were read by three authors (JS, RS, IM).
Disagreements were resolved by discussion.

Data extraction

The following data were extracted from selected papers: year
of publication, name of first author, fluorescent agent tested,
study design, number of patients, tumor grade, GTR rate, sen-
sitivity and specificity of the fluorescent agent for tumor tissue,
tumor-to-normal ratio (TNR) of the fluorescent signal, median
survival, progression-free survival (PFS), and incidence of ad-
verse events. GTR was defined as no residual enhancement on
post-operative magnetic resonance imaging (MRI). Overall
survival and PFSwas quantified in months. Among the includ-
ed studies, histological accuracy was quantified in two ways.

Table 1 Search syntax
PubMed search accessed on 03–21–2016 Embase search accessed on 03–21–2016

((BFluorescent Dyes^[Mesh] OR pigments
[Title/Abstract] OR pigment [Title/Abstract] OR
stains [Title/Abstract] OR stain [Title/Abstract] OR
fluorophores [Title/Abstract] OR fluorophore
[Title/Abstract] OR contrast agents [Title/Abstract]
OR contrast agent [Title/Abstract] OR dye
[Title/Abstract] OR fluorescent [Title/Abstract] OR
fluorescence [Title/Abstract] OR fluorochromes
[Title/Abstract] OR fluorogenic substrate
[Title/Abstract] OR coloring agents [Title/Abstract]
OR coloring agent [Title/Abstract] OR luminescent
agents [Title/Abstract] OR luminescent agent
[Title/Abstract] OR 5-ALA [Title/Abstract] OR
5-aminolevulinic acid [Title/Abstract])

AND

(BGlioma^[Mesh] OR glioma [Title/Abstract] OR
gliomas [Title/Abstract] OR GBM [Title/Abstract]
OR glioblastoma [Title/Abstract] OR brain tumor
[Title/Abstract] OR brain tumors [Title/Abstract]
OR brain tumour [Title/Abstract] OR brain tumours
[Title/Abstract] OR brain cancer [Title/Abstract])

AND

(BNeurosurgical Procedures^[Mesh] OR operation
[Title/Abstract] OR surgery [Title/Abstract] OR
surgical [Title/Abstract] OR neurosurgery
[Title/Abstract] OR resection [Title/Abstract]))

(‘fluorescent dye’/exp OR pigments:ti:ab OR
pigment:ti:ab OR stains:ti:ab OR stain:ti:ab OR
fluorophores:ti:ab OR fluorophore:ti:ab OR
(contrast AND agents):ti:ab OR (contrast AND
agent):ti:ab OR dye:ti:ab OR fluorescent:ti:ab OR
fluorescence:ti:ab OR fluorochromes:ti:ab OR
(fluorogenic AND substrate):ti:ab OR (coloring
AND agents):ti:ab OR (coloring AND agent):ti:ab
OR (luminescent AND agents):ti:ab OR
(luminescent AND agent):ti:ab OR 5-ALA:ti:ab OR
(5-aminolevulinic AND acid):ti:ab)

AND

(‘glioma’/exp OR glioma:ti:ab OR gliomas:ti:ab OR
GBM:ti:ab OR glioblastoma:ti:ab OR (brain AND
tumor):ti:ab OR (brain AND tumors):ti:ab OR
(brain AND tumour):ti:ab OR (brain AND
tumours):ti:ab OR (brain AND cancer):ti:ab)

AND

(‘neurosurgery’/exp OR operation:ti:ab OR
surgery:ti:ab OR surgical:ti:ab OR
neurosurgery:ti:ab OR resection:ti:ab)
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Some studies collected tissue samples near the tumor margin
from fluorescent and non-fluorescent areas for histopathologi-
cal examination and calculated the sensitivity and specificity of
distinguishing tumor from healthy brain tissue. Others mea-
sured the fluorescent signal intensity from tumor and brain
tissue and calculated a TNR. We considered grade I and II
tumors as low-grade gliomas (LGGs) and grade III and IV
gliomas as high-grade gliomas (HGGs) according to the
2016 World Health Organization (WHO) classification of tu-
mors of the central nervous system [60].

Results

We identified 2155 studies in PubMed and Embase after du-
plicates were removed. After screening by title and abstract,
237 studies remained for full-text review. Of these, we includ-
ed 105 studies describing the use of clinically or pre-clinically
tested fluorescent agents for application in FGS for glioma
(Fig. 1). Detailed characteristics of all 105 studies included
in this review are available in Table 2. Three studies were
randomized clinical trials, of which two had partially the same
data set. Three studies were meta-analyses. The other clinical
studies were retrospective or prospective cohort studies, or
case series. Preclinical studies included human or animal
ex vivo studies, animal in vivo studies, or in vitro studies.

Clinically tested fluorescent agents

Sixty-four studies describe the clinical use of fluorescent
agents [1, 3, 5, 6, 9, 11, 13–16, 22–26, 28–31, 33–35, 37,
38, 40–42, 44, 49, 52–54, 58, 64–66, 69, 71, 74, 75, 78,
80–82, 84–87, 89, 92, 94, 97–101, 105–107, 109, 110, 113,
115, 118]. Three ways of labeling tumor cells were identified
in the literature: (1) passive, (2) metabolic, and (3) molecular
labeling. Passive labeling occurs when enhanced permeability
and retention allow exogenous agents to accumulate at the
tumor site. The damaged blood–brain barrier (BBB) allows
exogenous agents (e.g., fluorescein or ICG) to concentrate in
glioma tissue [67].Metabolic fluorescent agents (e.g., 5-ALA)
are internalized and metabolized intracellularly [99].
Molecular targeting refers to the binding of agents to specific
molecules on the cell surface of the tumor cell. A popular
target is the epidermal growth factor receptor (EGFR) [67].

5-aminolevulinic acid (5-ALA)

5-ALA is a metabolic targeting agent and the natural precursor
of the fluorescent protoporphyrin (PpIX) in the heme synthe-
sis pathway. Ferrochelatase converts PpIX into heme intracel-
lularly by adding a Fe2 + −ion. In glioma cells, ferrochelatase
is downregulated. Therefore, these cells accumulate PpIX to a
fluorescently detectable level when this pathway is
overloaded with exogenous 5-ALA. PpIX absorbs light

Fig. 1 Flowchart depicting study
selection

Acta Neurochir (2017) 159:151–167 153



Table 2 Overview of all studies

Year Fluorescent
agent

Study design No. of
cases

Tumor grade
of patients

Control
group

GTR
rate
(%)

TNR Median
survival
(mo)

PFS
(mo)

6-PFS
(%)

Stummer et al. 2000 [98] 5-ALA Case series 52 GBM No 63 – 3 – –

Stummer er al. 2006 [99] 5-ALA RCT 322 HGG Yes 65 – 15 5 41

Eljamel et al. 2008 [26] 5-ALA RCT 27 GBM No – – 12 9 –

Hefti et al. 2008 [41] 5-ALA Case series 74 HGG No – – – – –

Nabavi et al. 2009 [66] 5-ALA Case series 36 HGG No – – – – –

Feigl et al. 2010 [31] 5-ALA Case series 18 HGG No 64 – – – 83

Ewelt et al. 2011 [28] 5-ALA Case series 17 HGG No – – – – –

Ewelt et al. 2011 [28] 5-ALA Case series 13 LGG No – – – – –

Floeth et al. 2011 [33] 5-ALA Case series 21 HGG No – – – – –

Floeth et al. 2011 [33] 5-ALA Case series 17 LGG No – – – – –

Diez Valle et al. 2011 [25] 5-ALA Case series 28 GBM No 83 – 16 – 68

Roberts et al. 2011 [81] 5-ALA Case series 11 GBM No – – – – –

Stummer et al. 2011b [97] 5-ALA Case series 243 HGG No – – 16 – –

Stummer et al. 2011a [101] 5-ALA RCT 349 HGG Yes – – 14 – 46

Idoate et al. 2011 [44] 5-ALA Case series 30 GBM No 83 – – – –

Sanai et al. 2011 [84] 5-ALA Case series 10 LGG No – – – – –

Valdes et al. 2011 [110] 5-ALA Cohort 14 LGG&HGG Yes – – – – –

Panciani et al. 2012 [74] 5-ALA Case series 23 GBM No – – – – –

Cortnum et al. 2012 [16] 5-ALA Case series 13 HGG No 70 – – – –

Eyopuglu et al. 2012 [30] 5-ALA Case series 37 HGG No 71–100 – – – –

Schucht et al. 2013 [87] 5-ALA Case series 56 GBM No 89b – – – –

Widhalm et al. 2013 [113] 5-ALA Case series 59 LGG&HGG No – – – – –

Della puppa et al. 2013 [22] 5-ALA Case series 31 HGG No 74 – – – –

Slotty et al. 2013 [94] 5-ALA Cohort 253 GBM Yes 49 – 20 – –

Aldave et al. 2013 [3] 5-ALA Case series 118 HGG No 62 – 21 – –

Diez Valle et al. 2014 [24] 5-ALA Cohort 251 HGG Yes 67 – – – 69

Roder et al. 2014 [82] 5-ALA Cohort 66 GBM Yes 46 – – – –

Belloch et al. 2014 [6] 5-ALA Case series 21 HGG No 71b – – – –

Schucht et al. 2014 [89] 5-ALA Case series 72 GBM No 73 – – – –

Coburger et al. 2014 [13] 5-ALA Case series 34 HGG No – – – – –

Piquer et al. 2014 [75] 5-ALA Case series 38 HGG No 61 – – – –

Stummer et al. 2014 [100] 5-ALA Case series 33 HGG No – – – – –

Barbagallo et al. 2015 [5] 5-ALA Cohort 50 HGG Yes 97 – – – –

Coburger et al. 2015 [14] 5-ALA Cohort 33 GBM Yes 100 – 18 6 –

Cordova et al. 2015 [15] 5-ALA Case series 30 GBM No – – – – 29

Gessler et al. 2015 [34] 5-ALA Case series 32 GBM No 97 – 19 14 –

Haj-Josseini et al. 2015 [37] 5-ALA Case series 30 HGG No – – – – –

Hickmann et al. 2015 [42] 5-ALA Cohort 58 HGG Yes 57c – 20 12 –

Noell et al. 2015 [70] 5-ALA Case series 29 HGG No 25 – 19 – 47

Schatlo et al. 2015 [85] 5-ALA Case series 200 HGG No – – – – –

Szmuda et al. 2015 [105] 5-ALA Case series 21 HGG No 57c – – – –

Valdes et al. 2015 [109] 5-ALA Case series 12 LGG No – – – – –

Yamada et al. 2015 [115] 5-ALA Case series 99 HGG No – – – – –

Hauser et al. 2016 [40] 5-ALA Case series 13 GBM No 77 – 14 – 31

Quick-Weller et al. 2016 [78] 5-ALA Case series 7 GBM No – – – – –

Teixidor et al. 2016 [106] 5-ALA Case series 85 HGG No 54b – 14 7 58

Moore et al. 1948 [65] Fluorescein Case series 12 LGG&HGG No – – – – –
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Table 2 (continued)

Year Fluorescent
agent

Study design No. of
cases

Tumor grade
of patients

Control
group

GTR
rate
(%)

TNR Median
survival
(mo)

PFS
(mo)

6-PFS
(%)

Shinoda et al. 2003 [92] Fluorescein Cohort 32 GBM Yes 84b – 15 – –

Koc et al. 2008 [52] Fluorescein Cohort 37 GBM Yes 83 – 11 – –

Chen et al. 2012 [11] Fluorescein Cohort 22 LGG&HGG Yes 80b – – 7 –

Kuroiwa et al. 1998 [54] Fluorescein Case series 10 HGG No 100 – – – –

Okuda et al. 2012 [71] Fluorescein Case series 10 GBM No 100 – – – –

Schebesch et al. 2013 [86] Fluorescein Case series 35 LGG&HGG No 80 – – – –

Acerbi et al. 2014 [1] Fluorescein Case series 20 HGG No 80 – – – 72

Diaz et al. 2015 [23] Fluorescein Case series 12 HGG No 100 – – – –

Hamancioglu et al. 2016 [38] Fluorescein Case series 28 HGG No 79b – – – –

Martirosyan et al. 2016 [64] Fluorescein Case series 74 LGG&HGG No – – – – –

Hansen et al. 1993 [39] ICG Preclinical – – No – – – – –

Haglund et al. 1994 [36] ICG Preclinical 22 – No – – – – –

Haglund et al. 1996 [35] ICG Case series 9 LGG&HGG No – – – – –

Martirosyan et al. 2011 [63] ICG Preclinical 30 – No – – – – –

Eyupoglu et al. 2015 [29] ICG Case series 3 HGG No – – – – –

Kremer et al. 2009 [53] AFL-HSA Case series 13 HGG No 69 – – – –

Noell et al. 2011 [70] Hypericin Preclinical 16 – No – 19.8 – – –

Ritz et al. 2012 [80] Hypericin Case series 5 HGG No – – – – –

Lin et al. 2001 [58] Endogenous Case series 26 LGG&HGG No – – – – –

Toms et al. 2005 [107] Endogenous Case series 24 LGG&HGG No – – – – –

Marcu et al. 2004 [62] Endogenous Preclinical 6 – No – – – – –

Yong et al. 2006 [117] Endogenous Case series 31 LGG&HGG No – – – – –

Butte et al. 2011 [9] Endogenous Case series 24 LGG&HGG No – – – – –

Leppert et al. 2006 [56] Endogenous Preclinical – – No – – – – –

Kantelhardt et al. 2009 [50] Endogenous Preclinical – – No – – – – –

Riemann et al. 2012 [79] Endogenous Preclinical – – No – – – – –

Kantelhardt et al. 2016 [49] Endogenous Case series 8 – No – – – – –

Veiseh et al. 2007 [111] Fluorophore Preclinical 22 – No – – – – –

Lanzardo et al. 2011 [55] Fluorophore Preclinical 4 – No – – – – –

Yan et al. 2011 [116] Fluorophore Preclinical – – No – 1.6 – – –

Agnes et al. 2012 [2] Fluorophore Preclinical – – No – – – – –

Cutter et al. 2012 [20] Fluorophore Preclinical 3 – No – – – – –

Huang et al. 2012 [43] Fluorophore Preclinical – – No – 16.3–79.7 – – –

Burden-Gulley et al. 2013 [7] Fluorophore Preclinical – – No – 11.7–19.8 – – –

Ma et al. 2014 [61] Fluorophore Preclinical – – No – – – – –

Crisp et al. 2014 [18] Fluorophore Preclinical 14 – No – 7.8 – – –

Fenton et al. 2014 [32] Fluorophore Preclinical 20 – No – – – – –

Butte et al. 2014 [8] Fluorophore Preclinical – – No – – – – –

Qiu et al. 2015 [77] Fluorophore Preclinical 36 – No – – – – –

Swanson et al. 2015 [104] Fluorophore Preclinical 35 – Yes – 9.28 – – –

Warram et al. 2015 [112] Fluorophore Preclinical 5 – No – – – – –

Antaris et al. 2016 [4] Fluorophore Preclinical 5 – No – 5.50 – – –

Davis et al. 2010 [21] Fluorophore Preclinical 15 – No – – – – –

Sexton et al. 2013 [91] Fluorophore Preclinical 4 – No – – – – –

Irwin et al. 2014 [45] Fluorophore Preclinical 8 – No – – – – –

Kantelhardt et al. 2010 [48] Nanoparticle Preclinical 2 – No – 200–1000 – – –

Seekell et al. 2013 [90] Nanoparticle Preclinical 6 – No – – – – –
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between 375 and 440 nm and emits light between 640 and
710 nm [119].

Forty-four clinical studies described the use of 5-ALA for
glioma surgery [3, 5, 6, 13–16, 22, 24–26, 28, 30, 31, 33, 34,
37, 40–42, 44, 66, 69, 74, 75, 78, 81, 82, 84, 85, 87, 89, 94,
97–101, 105, 106, 109, 110, 113, 115], of which only six
studies included LGGs [28, 33, 84, 109, 110, 113]. 5-ALA
is the only fluorescent agent that has been tested in an RCT.
Three RCTs compared FGS with 5-ALA to surgery without
fluorescent guidance, with two studies including partially the
same patients [26, 99, 101]. The study by Stummer et al.
showed a higher GTR rate for the 5-ALA group compared
to the group that was operated without 5-ALA (65 vs. 35%)
[99]. In observational studies, the rate of GTR after 5-ALA
administration ranges from 25 to 94.3% for HGGs [3, 5, 6, 14,
16, 22, 24, 25, 30, 31, 34, 40, 42, 44, 69, 75, 82, 87, 89, 94, 98,
99, 105, 106, 113]. However, studies that included a control
group all confirm a significantly higher GTR rate in the FGS
group [14, 24, 82, 94, 99]. Two RCTs reported an increased
PFS (8.6 vs. 4.8 months) [26] or increased rate of 6-month
PFS (46 vs. 28%) [101]. Regarding extending overall survival
by using 5-ALA during neurosurgical resection, results vary
between non-significant (14–15 vs. 13–14 months) [99, 101]
and significant (12 vs. 6 months) [26] survival benefits.

Observational studies show a broad range regarding sensi-
tivity and specificity in discriminating HGG tissue from
healthy brain tissue [13, 25, 28, 33, 34, 37, 40, 41, 74, 81,
98, 105, 110, 113, 115]. For discriminating glioblastoma

multiforme (GBM) tissue from healthy brain tissue, the sensi-
tivity and specificity ranged from 70 to 95% and 43 to 100%,
respectively [25, 34, 74, 98]. All four studies that included
both LGG and HGG patients reported a lower sensitivity
and specificity in LGGs [28, 33, 110, 113]. To increase the
accuracy of LGGs, FGS was combined with intra-operative
confocal microscopy [84] or an intraoperative probe for quan-
titative fluorescence measurement [109]. Other intraoperative
techniques used to increase the extent of glioma resection are
photodynamic therapy (PDT) [26], iMRI [14, 30, 34, 40, 78,
85], intra-operative CT [5], exoscope imaging [6, 75], fluores-
cence spectrometry [37, 100], confocal microscopy [84], and
intraoperative mapping [22, 89].

Three meta-analyses have been performed to evaluate the
literature on 5-ALA [27, 103, 120]. GTR and PFS were im-
proved in all meta-analyses that compared 5-ALA with con-
ventional white-light surgery. A significant difference in over-
all survival was reported in two meta-analyses [27, 120]. One
meta-analysis reported no significant difference in overall sur-
vival [103], however, this meta-analysis also included studies
on fluorescein for overall survival. The mean sensitivity and
specificity in distinguishing tumor from healthy brain tissue
ranged between 83 and 87% and 89 and 91% in all three meta-
analyses, respectively.

Only the RCT by Stummer et al. 2011 found a significant
difference in the incidence of adverse effects. The 5-ALA
group had more frequent deterioration at the National
Institute of Health Stroke Scale (NIH-SS) at 48 h after surgery

Table 2 (continued)

Year Fluorescent
agent

Study design No. of
cases

Tumor grade
of patients

Control
group

GTR
rate
(%)

TNR Median
survival
(mo)

PFS
(mo)

6-PFS
(%)

Kircher et al. 2003 [51] Nanoparticle Preclinical 5 – No – – – – –

Trehin et al. 2006 [108] Nanoparticle Preclinical 14 – No – – – – –

Cai et al. 2006 [10] Nanoparticle Preclinical – – Yes – – – – –

Jackson et al. 2007 [46] Nanoparticle Preclinical – – No – – – – –

Orringer et al. 2009 [73] Nanoparticle Preclinical – – No – – – – –

Jiang et al. 2013 [47] Nanoparticle Preclinical 18 – Yes – – – – –

Ni et al. 2014 [68] Nanoparticle Preclinical – – No – – – – –

Zhou et al. 2015 [120] Nanoparticle Preclinical 6 – Yes – – – – –

Cui et al. 2015 [19] Nanoparticle Preclinical 344 – No – – – – –

Roller et al. 2015 [83] Nanoparticle Preclinical 10 – No – – – – –

Zhao et al. 2013 [119] 5-ALA Meta-analysis 10a – – – – – – –

Su et al.2014 [103] Multiple Meta-analysis 12a – – 72 – – 5 –

Eljamel et al. 2015 [27] 5-ALA Meta-analysis 20a – – 75 – – 8 –

5-ALA δ-Aminolevulinic acid, 6-PFS 6-month progression-free survival, AFL-HSA 5-aminofluorescein labeled to human serum albumin, GTR gross-
total resection, ICG indocyanine green, mo months, no. number, PFS progression-free survival, TNR tumor-to-normal ratio, − not specified
a Number of studies included in the meta-analysis
b Assessment of postoperative MRI up to > 72 h after surgery
c Timing of assessment of postoperative MRI not reported
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[101]. Other reported adverse effects of 5-ALA include nau-
sea, mild hypotension, elevated liver enzymes, and photosen-
sitivity up to 48 h post administration [12, 119].

Fluorescein

Eleven papers described the use of fluorescein as a fluorescent
agent in glioma surgery [1, 11, 23, 38, 52, 54, 64, 65, 71, 86,
92]. All were observational studies including patients with
HGG. Only three studies included patients with LGG [11,
64, 86]. Fluorescein is a passive targeting agent commonly
used for ophthalmic examinations of the retina [67].
Interestingly, as early as in 1948, a study demonstrated a pos-
itive predictive value of 96% in locating brain tumors [65].
Fluorescein is administered intravenously at induction of an-
esthesia or at time of opening the dura. It is excited at a wave-
length of 460–500 nm and has an emission spectral range of
540–690 nm. As this is within the spectrum of visible light,
fluorescein is used with [1, 23, 27, 38, 54, 71, 86, 120] or
without a filter on the surgical microscope [11, 52, 64, 65, 92].

Nine studies showed that upon administration of fluoresce-
in, GTR can be achieved in 79–84% of patients [1, 11, 23, 38,
52, 54, 71, 86, 92]. Studies comparing the use of fluorescein to
conventional white light surgery showed a GTR-rate of 30–
55% in the latter group [11, 52, 92]. The use of a special filter
integrated into the microscope resulted in an even higher GTR
rate of 80–100%; this integrated filter allowed for more accu-
rate delineation at the tumor border and required less fluores-
cein for visualization (3–8 mg/kg with filter instead of 20
mg/kg without filter in the microscope) [1, 23, 27, 38, 54,
71, 86, 120].

The effect of fluorescein on survival has been evaluated by
four groups. Chen et al. found an increase in PFS (7.4 vs.
5.4 months) [11]. Others did not find an increase in overall
survival [52, 92] or did not compare with a control group [1].

Three papers reported on the presence of tumor cells in
fluorescein negative areas [11, 54, 92]. Others reported that
fluorescein identifies tumor tissue with a sensitivity and spec-
ificity of 82–94% and 90–91%, respectively [1, 23, 64]. To
enhance histological accuracy, Martirosyan et al. explored the
use of confocal microscopy in combination with fluorescein
[64]. This technique makes use of a handheld probe containing
a miniature scanner. The scanner can be placed in direct con-
tact with the tissue of interest and can be visualized on a con-
nected external monitor. The imaging field has a diameter of
0.5 mm. With the integrated depth actuator in the probe, the
surgeon can focus on a specific depth beneath the contact plane
ranging from 0 to 500 μm. Confocal microscopy with fluores-
cein is able to visualize individual invading cells at the tumor
margin and even subcellular histological features. A sensitivity
and specificity of 91 and 94%, respectively, was reported in
distinguishing tumor from healthy brain tissue [64].

Studies that included patients with LGG did not stratify for
tumor grade. One study reported that visualization was less
obvious in LGGs or in recurrent tumors (that had previously
been resected or irradiated), due to accumulation of scar tis-
sue. In a survey of five neurosurgeons, fluorescein was rated
as ‘helpful’ in visualizing gliomas in 80% of the cases [86].

Side effects of fluorescein include yellow coloration of
skin, mucosa, and urine up to 24 h after surgery, generally
seen only after high-dose (20 mg/kg) fluorescein [65, 71,
92]. No side effects were detected with low-dose (2–8 mg/kg)
fluorescein [1, 23, 38, 54, 86]. Anaphylactic reactions to
fluorescein have been reported [117].

Indocyanine green (ICG)

Two clinical and three pre-clinical studies reported on the use
of ICG for glioma surgery [29, 35, 36, 39, 63, 93]. ICG has a
peak emission at 820 nm. This near-infrared (NIR) spectrum
allows visualization of deeper structures than does visible
wavelength. ICG works as a passive targeting agent and de-
pends on the breakdown of the BBB to concentrate at the
tumor site. It is already used for several clinical applications,
including determining cardiac output, ascertaining hepatic
function and liver blood flow, and implementing ophthalmic
angiography. ICG is administered intravenously before resec-
tion or afterwards to visualize remaining tumor tissue [67].

No articles evaluated the rate of GTR or survival in patients
treated with ICG. In rat glioma models, ICG shows an under-
estimation of 1 mm of the histological tumor border [39] and a
sensitivity and specificity of 90 and 93%, respectively [36]. In
humans, low-dose ICG (1–2 mg/kg) combined with a filter
microscope revealed remaining tumor tissue after resection.
Detection was superior in high-grade compared to low-grade
gliomas [35]. In a recent case series that combined both fluo-
rescent agents for GBM resection, three tumor zones could be
distinguished from the center to the margin of the tumor: a
central zone that was stained by both compounds, a zone that
was stained by only ICG and not 5-ALA, and the most periph-
eral zone that contained tumor cells but was not stained by any
of the compounds. This suggests that ICG is superior to 5-ALA
in staining tumor tissue with a low cell density [29]. Confocal
microscopy visualized individual invading tumor cells in
peritumoral tissue in a GBM mouse model, and subcellular
structures correlated with histological features. The NIR wave-
length allowed an imaging plan depth of >350 μm [63].

No complications or adverse effects of ICG were men-
tioned in these studies. Anaphylactic reactions to ICG have
been reported [72].

5-aminoflurescein human serum albumin

One case series assessed the passive tumor-targeting agent 5-
aminofluorescein (AFL) labeled to human serum albumin
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(HSA) (excitation 495 nm, emission 535 nm). FGSwith AFL-
HSA in 13 patients with HGG resulted in a GTR rate of 69%.
No phototoxic, allergic, or other side effects related to AFL-
HSAwere observed [53].

Hypericin

One case series and one pre-clinical study assessed hypericin,
a passive tumor-targeting agent. Hypericin (excitation 415–
495 nm; emission 590–650 nm) is intravenously administered
in patients undergoing surgery for HGG. Tissue samples from
fluorescent and non-fluorescent areas showed a sensitivity and
specificity in distinguishing human brain and tumor tissue of
91–94% and 90–100%, respectively. No side effects were
observed [80]. In an animal study, rats were implanted with
GBM cells and intravenously injected with hypericin. The
accumulation of hypericin in the brain was studied ex vivo
under a fluorescence microscope. The tumor-to-normal ratio
(TNR) was 19.8, after correction for auto-fluorescence [70].
No adverse effects were observed.

Endogenous fluorophores

Endogenous fluorophores (e.g., NAD(P) H, FAD, and colla-
gen) in brain and tumor tissue can emit fluorescent signals
after excitation. Nine studies, five of which were clinical,
assessed the use of endogenous fluorophores [9, 49, 50, 56,
58, 62, 79, 107, 118]. Four case series evaluated endogenous
fluorophores by using optical spectroscopy [9, 58, 107, 118]
and one case series used multiphoton excitation tomography
[49]. With optical spectroscopy, a fiber optic probe is placed
against the tissue of interest to detect the fluorescent signal.
An algorithm then distinguishes brain and tumor tissue [9].
Two studies including both patients with HGG and with LGG
achieved a sensitivity and specificity in discriminating infil-
trative tumor margin and healthy tissue of 94–100% and 76–
93%, respectively [58, 107]. The decrease of fluorescent sig-
nal in time provides additional information. Adding this extra
dimension to the algorithm, sensitivity and specificity in dis-
criminating LGG from normal brain tissue were 90–100% and
98–100%, respectively. Due to necrosis and a high degree of
heterogeneity, however, the sensitivity and specificity for
HGG were 47–95% and 94–96%, respectively [9, 118].

Multiple excitation beams from different angles allow ex-
citation wavelengths to be in the infrared spectrum. This re-
duces phototoxicity, light scattering, and artifacts from blood,
and increases the penetration depth. Excitation only occurs
when two low-energy photons are simultaneously absorbed
by the fluorophore where the laser beams coincide, reducing
the amount of background signal. Kantelhardt et al. were the
first to use multiphoton excitation tomography intra-
operatively in humans, and reported the ability to differentiate

between tumor and brain tissue on cellular and subcellular
levels [49]. No adverse effects were observed.

Pre-clinically tested fluorescent agents

Thirty studies described the results of fluorescent agents in a
pre-clinical phase (Table 2) [2, 4, 7, 8, 10, 18–21, 32, 43,
45–48, 51, 55, 61, 68, 73, 77, 83, 90, 91, 104, 108, 111,
112, 116, 121]. Within this group of fluorescent agents, a
broad distinction could be made between molecular
fluorophores and nanoparticles. Molecular fluorophores are
small-sized molecules with fluorescent properties. ICG and
fluorescein are examples of clinically tested organic molecular
fluorophores [76]. Nanoparticles are structures of nanometer
size (1–100 nm). Depending on their structure, nanoparticles
can contain optical properties or obtain optical properties by
labeling with fluorophores. Targeting properties of both
fluorophores and nanoparticles are tunable by adding
targeting peptides [76]. Due to their larger size, nanoparticles
are often less susceptible to nonspecific binding than molecu-
lar fluorophores. This nonspecific binding can modify the
optical properties of the fluorophore and the function of cel-
lular proteins [114]. In this review, we will discuss the pre-
clinically tested fluorescent agents according to this distinc-
tion. We will discuss nanoparticles and fluorophores bound to
epidermal growth factor receptor (EGFR) targeting peptides in
a separate section.

Pre-clinically, 18 studies evaluated molecular fluorophores
[2, 4, 7, 18, 20, 21, 32, 43, 45, 55, 61, 77, 91, 104, 111, 112,
116] and 12 studies evaluated nanoparticles [10, 19, 46–48,
51, 68, 73, 83, 90, 108, 121]. Four of these 30 studies evalu-
ated fluorophores or nanoparticles bound to EGF or anti-
EGFR antibodies [21, 48, 90, 91]. Other fluorophores includ-
ed IRDye 800CW-RGD [43], Cy5-SBK2 [7], Cy3-AS1411-
TGN [61], cyclic-RGD-PLGC (Me) AG-ACPP [18], CH1055
[4], CLR1502 [104], anti-TRP-2 labeled with Alexa fluor 488
or 750 [32], motexafin gadolinium [77], BLZ-100 [8],
Angiopep-2-Cy5.5 [116], DA364-Cy5.5 [55], PARPi-Fl
[45], chlorotoxin:Cy5.5 [111], PEG-Cy5.5 [2], GB119-Cy5
[20] and cetuximab-IRDye 800CW [112]. Other nanoparticles
included quantum dots [10, 46], iron oxide nanoparticles [51,
108, 121], polymer based nanoparticles [19, 47, 73],
upconversion nanoparticles (UCNPs) [68], and liposomal
nanocarriers [83].

Molecular fluorophores

Eighteen papers described molecular fluorophores with mo-
lecular (15), metabolic (one), and passive (two) targeting
mechanisms [2, 4, 7, 8, 18, 20, 21, 32, 43, 45, 55, 61, 77,
91, 104, 111, 112, 116]. Fluorophores conjugated to the
integrin-targeting peptide RGD (IRDye 800CW-RGD) [43]
or the protein tyrosine phosphatase mu-targeting peptide
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SBK2 (Cy5-SBK2) [7] showed a TNR of 16.3–79.7 and
11.7–19.8, respectively, dependent on the glioma cell line be-
ing observed. Cy5-SBK2 was tested in vivo and labeled in-
vading tumor cells up to 3.5 mm away from the tumor margin.
Molecular targeting peptides can be combined to form dual
targeting probes. Targeting peptide AS1411 labeled with Cy3
showed a significantly higher uptake in glioma cells when
combined with the BBB targeting peptide TGN [61]. Dual
targeting of integrin and matrix metallo-proteinase (MMP-2)
showed in vivo a TNR of 7.8 and in vitro an improved uptake
compared to integrin and MMP targeting alone [18].

A metabolic targeting agent is the alkylphosphocholine
analog (CLR1502). This was comparedwith 5-ALA in amouse
model, showing a significant higher TNR (9.28 vs. 4.81) [104].

Two passive targeting fluorophores were identified [4, 77]. A
mouse study showed that the CH1055 molecule has a maximal
TNR of 5.50 ± 0.36. The authors speculate that, in the future,
this molecule could also be conjugated to anti-EGFR affibodies
to increase the TNR [4]. Furthermore, motexafin gadolinium
was shown to be a feasible marker for gliomas in a rat glioma
model both with optical imaging and on T1 MRI [77].

Nanoparticles

Twelve papers evaluated nanoparticles in a preclinical setting
with molecular (eight studies), metabolic (two), and passive
(two) targeting mechanisms [10, 19, 46–48, 51, 68, 73, 83, 90,
108, 121]. Quantum dots (QDs) are nanoparticles constructed
from semiconducting nanocrystals and can function as fluo-
rescent ‘dye’ due to their optical properties. Quantum dots
have a tunable emission wavelength based on the diameter
and stable fluorescence activity. They can be used as imaging
or tumor-targeting agents, and specific peptides coated on the
surface can modify their function [76].

QDs coated with RGD peptides (QD-RGDs) specifically
target integrin molecules expressed by GBM cells. In vivo,
fluorescence imaging of QD-RDGs showed a TNR of 4.42.
This was significantly higher than for QDs without RDGs
coated on their shell [10]. The peptide F3, which targets the
tumor cell surface receptor nucleolin, enhances uptake of the
fluorescent polyacrylamide nanoparticles in glioma cells by a
factor of 3.1 compared to nanoparticles without F3 [73]. One
study investigated FGS in mice with selective porphyrin-
based nanostructure mimicking nature lipoproteins (PLP).
In vivo confocal microscopy showed tumor delineation at
the cellular level. FGS resulted in minimal residual tumor cells
in the resection cavity [19]. Dual targeting upconversion
nanoparticles (nanoparticles that are capable of absorbing
two or more low-energy photons and emitting one high-
energy photon) were labeled with angiopeptide-2 and PEG
(ANG/PEG-UCNPs) to cross the BBB and target GBM cells
in mice. Due to their bimodal imaging properties, ANG/PEG-
UCNPs can be used for MRI diagnosis and fluorescence

imaging for surgery [68]. Magnetic ironoxide nanoparticles
use these bimodal imaging properties as well. An iron oxide
nanoparticle labeled with polyethylene glycol-block-
polycaprolactone (PEG-b-PCL) and the glioma-targeting li-
gand lactoferrin (Lf), showed a TNR of 3.8 in a mouse model
[121]. Molecular targeting with lactoferrin is also performed
with a polymer-based nanoparticle [47].

Cross-linked iron oxide (CLIO) labeled with Cy5.5 is a
metabolic targeting nanoparticle that is internalized and accu-
mulated in tumor cells within a maximum of 24 h after injec-
tion [51, 108]. Uptake of CLIO-Cy5.5 was also seen in mi-
croglia and macrophages at the tumor boarder, resulting in an
overestimation of fluorescent enhancement beyond the tumor
border between 2 and 24 μm in mice and rat models. No
uptake was seen in neurons [108].

Evans Blue (EB) is a passive fluorescent agent that falsely
stains healthy tissue due to diffusion. EB capsuled in a lipo-
somal nanoparticle (nano-EB), however, showed a sensitivity
and specificity in discriminating tumor from brain tissue of 89
and 100%, respectively [83]. Nano-EB did not stain healthy
brain tissue, but underestimated the true margin on the order
of tens to hundreds of micrometers, as reported in a rat study.
High-dosed QDs coated with polyethylene glycol (PEG) are
phagocytized by tumor-induced inflammatory cells (macro-
phages and microglia) in the tumor border, but not by tumor
or brain cells. A study showed that by using QD-PEGs, the
tumor margin and satellite lesions could be visualized in vivo
in rats [46].

Anti-EGFR or anti-EGF

Four preclinical studies evaluated anti-EGFR antibodies or
EGF labeled with a fluorescent compound to discriminate
tumor cells from adjacent brain tissue [21, 48, 90, 91].
Epidermal growth factor receptor (EGFR) is a cell-surface
receptor overexpressed in many cancer types, including glio-
ma. Gliomas express the wild-type or mutated forms of
EGFR, including the GBM specific EGFRvIII. In a mouse
model, glioma cells were injected in the brain and 2 weeks
later nanoparticles (gold nanorods, GNR) labeled with anti-
EGFR antibodies were injected intravenously. Post-mortem
imaging of their brain showed a strong absorption in malig-
nant tissue areas [90]. In a combined human and animal
ex vivo study, labeling quantum dots (QDs) with EGF and
anti-EGFR antibodies visualized individual tumor cells with
confocal imaging reaching a TNR as high as 1000, even for
LGGs. QDs bound to a combination of EGF and several
EGFR antibodies were able to target mutated forms of
EGFR as the GBM specific EGFRvIII [48]. In vivo imaging
with MRI- fluorescence molecular tomography (MRI-FMT)
of mice injected with IRDye 8000CW labeled EGF, showed a
100% sensitivity and specificity in distinguishing mice with
EGFR (+) tumor cell lines from EGRF (−) tumor cell lines or
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control mice. Histological accuracy in distinguishing brain
and tumor tissue was not calculated, however [21]. In a recent
mouse study, the smaller anti-EGFR affibody protein
(±7kDA) had a significantly higher concentration in the tumor
periphery than the full antibody (±150 kDa) [91]. Molecular
targeting of EGFR is a promising development in FGS; how-
ever, it is dependent on the expression of EGFR in tumor cells.

Discussion

Various fluorescent agents have been studied for use in glioma
surgery, of which 5-ALA, ICG, fluorescein, hypericin, AFL-
HSA, and endogenous spectroscopy have been tested clinical-
ly (Table 3).

The three RCTs demonstrated that the use of 5-ALA-based
FGS results in improved extent of resection in FGS for glioma
[99], and improved PFS [26, 101]. Observational cohort stud-
ies suggest that the use of fluorescein increases the rate of
GTR as well [11, 52, 92], and that it has a positive effect on
PFS [11]. To date, the evidence for effectiveness of clinically
tested fluorescent agents other than 5-ALA has been based on
only observational cohort studies and case series. Selection
bias is a major factor influencing the results in these studies.

A direct comparison between 5-ALA and other fluorescent
agents is therefore not possible and would require additional,
specifically designed studies, however.

Methodological heterogeneity reduces comparability of
the studies. Several of the clinical 5-ALA studies specifically
included gliomas in eloquent areas, which could have result-
ed in a lower GTR rate, PFS, and overall survival compared
to gliomas in surgically favorable locations [22, 31, 89]. In
future studies, parameters such as tumor localization should
be included so that relevant corrections can be made. 5-ALA
but also fluorescein and ICG have been evaluated in combi-
nation with additional intraoperative tools to increase the
visualization of the tumor margin and the extent of resection,
thereby reducing the comparability of different studies.
Different timing and dose of the fluorescent agent add to
the differences between the studies as well. Fluorescein, for
example, was administered intravenously at the time of an-
esthesia induction [23] or opening of the dura mater [52]
with dosage regimens ranging from 3 mg/kg [23] to
20 mg/kg [52]. Also, it is essential that a more standard
definition of GTR is used. In most of the selected studies,
GTR was defined as absence of contrast enhancement on
post-operative MRI [27]. Other definitions included a reduc-
tion of more than 98% of the tumor volume based on

Table 3 Overview of clinically tested targeting agents

Agent Excitation
(nm)

Emission
(nm)

Mode of
targeting

GTR (%) Survival
(months/%)

Adverse effects Remark

5-ALA 375–440 640–710 Metabolic 65 vs. 35a - 12–15 vs. 6–14a

- PFS: 5–9 vs. 4–5a

- 6-PFS: 41–46% vs.
21–28%a

- Phototoxicity,
higher rate of

deterioration at
48 h

Applicable with
confocal

microscopy and
PDT

Fluorescein 460–500 540–690 Passive 80–100
vs. 30–

55

- 11–15 vs. 10–13
- PFS: 7.4 vs. 5.4

- Coloring of skin,
mucosa, and urine

- Anaphylactic reactions

Applicable with
confocal

microscopy

ICG 778 700–850 Passive – – Anaphylactic
reactions

Applicable with
confocal
microscopy

Hypericin 415–495 590–650 Passive – – No side effects
observed

Application with
PDT

AFL-HSA 495 535 Passive 69 – No side effects
observed

–

Endogenous
(spectroscopy)

337 360–750 Endogenous – – No side effects
observed

–

Endogenous
(multiphoton
tomography)

700–1000 Dependent on
excitation intensity

Endogenous – – – Destruction of
single
cell in 3D
matrix
(rat study)

5-ALA δ-aminolevulinic acid, AFL-HAS 5-aminofluorescein bound to human serum albumin, GTR gross-total resection, HGG high-grade glioma, ICG
indocyanine green, LGG low-grade glioma, nm nanometer, PDT photo-dynamic therapy, PFS progression-free survival, Sens sensitivity, Spec speci-
ficity, TNR tumor-to-normal ratio; − : not specified
a Data from RCTs
bData from a meta-analysis including only prospective studies
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volumetric measures [31], or less than 0.175 cm3 contrast
enhancement on the post-operative MRI [26]. Instead of
GTR, some authors report volumetric differences between
pre- and post-operative MRI [15, 25]. Furthermore, the
timing of the post-operative MRI varied between the studies
from less than 24 h [52], less than 72 h [99], less than 1 week

[11] to up to even 1 month [92] after surgery. Often, no
details were provided by whom the post-operative MRIs
were evaluated and if they were blinded to the procedure
performed [11]. This variety in timing, reading of the im-
ages, and blinding affect the quality of assessment and com-
parability of the reported GTR rates among all studies.

Table 4 Overview of pre-
clinically tested targeting agents Agent Fluorescent

compound
Emission peak
(nm)

Mode of
targeting

Histological accuracy

IRDye 800CW-RGD Fluorophore 794 Molecular TNR 16.3–79.7

Cy3-AS1411-TGN Fluorophore 570 Molecular –

Cy5-SBK2 Fluorophore 670 Molecular TNR 11.7–19.8

Cyclic-RGD-PLGC
(Me)AG-ACPP

Fluorophore 670 Molecular TNR 7.8

Anti-TRP-2-Alexa
fluor 488 or 750

Fluorophore 519 or 775 Molecular –

CLR1502 Fluorophore 778 Metabolic TNR 9.28 (vs. 4.81 in
5-ALA)

CH1055 Fluorophore 1055 Passive TNR: 5.50 ± 0.36

Motexafin gadolinium Fluorophore 750 Passive –

Cetuximab-IRDye 800CW Fluorophore 794 Molecular –

EGF – IRDye 800CW Fluorophore 794 Molecular –

Anti-EGFR affibody protein –
IRD 800CW

Fluorophore 794 Molecular –

PEG-Cy5.5 Fluorophore 665 Passive –

BLZ-100 Fluorophore 700–850 Molecular –

PARPi-FL Fluorophore 525 Molecular –

DA364-C5.5 Fluorophore 694 Molecular –

GB119-Cy5 Fluorophore 665 Molecular –

Angiopep-2-Cy5.5 Fluorophore 694 Molecular TNR 1.6

Chlorotoxin:Cy5.5 Fluorophore 694 Molecular –

CLIO-Cy5.5 Nanoparticle 694 Metabolic –

QD-RGD Nanoparticle 705 Molecular TNR 4.42a

QD-PEG Nanoparticle 705 Passive –

Polyacrylamide NP – F3 Nanoparticle Dye dependent Molecular n.q.b

Lf-MPNA nanogel – Cy5.5 Nanoparticle 694 Molecular –

Liposomal EB nanocarrier Nanoparticle 680 Passive sens 89% spec 100%

ANG/PEG-UCNPs Nanoparticle 800 Molecular –

Lf-SPIO - Cy5.5 Nanoparticle 694 Molecular TNR 3.8c

PLP – Porphyrine Nanoparticle 645–730 Molecular –

QD – Anti-EGFR antibody &
QD-EGF

Nanoparticle 635–675 Molecular TNR 200–1000

GNR – Anti-EGFR antibody Nanoparticle 600–1200 Molecular –

ACPP activatable cell-penetrating peptide, ANG angiopeptide, AS1411 glioma-targeting aptamer, BLZ-100 indo-
cyanine green conjugated to chlorotoxin, CLIO cross-linked iron oxide, Cy3 cyanine3, Cy5.5 cyanine5.5, EB
Evans Blue, EGF (R) epidermal growth factor (receptor), GNR gold nano rods, Lf lactoferrin, MPNA poly (N-
isopropylacrylamide-co-acrylic acid), n.m. nanometer, n.q. not quantified, NP nanoparticle, PEG polyethylene
glycol, PLP porphylipoprotein, QD quantum dots, RGD integrin-targeting peptide, SBK2 protein tyrosine phos-
phatase mu-targeting peptide, Sens sensitivity, Spec specificity, SPIO superparamagnetic iron oxide nanoparticle,
TGN blood–brain barrier targeting peptide, TNR tumor-to-normal ratio, TRP tyrosinase-related protein, UCNPs
upconversion nanoparticles, −: not specified
a Significantly higher TNR compared to mice injected with QDs without RGD peptide coating
b Significantly higher uptake in glioma cells than MPNA nanogels without lactoferrin labeling
c Significantly higher TNR compared to mice injected with Cy5.5-SPIO without lactoferrin labeling
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Reported sensitivities and specificities of the various agents
to distinguish brain from tumor tissue vary greatly between
the included studies. Observational studies suggest that all
clinically tested exogenous agents had a lower histological
accuracy in LGGs compared to HGG [28, 33, 35, 86, 109,
110, 113]. In contrast, endogenous fluorophores showed a
higher histological accuracy in LGGs compared to HGGs [9,
118]. However, this outcome measure is very susceptible to
bias given the lack of uniform agreement on what samples
should be studied. The results are very dependent on the num-
ber, timing, and location of biopsy samples taken during sur-
gery. These details are often lacking or described in a non-
reproducible and non-comparable fashion.

Pre-clinically, many fluorescent agents with different (more
targeted) mechanisms of action are being developed and tested
for FGS for glioma (Table 4). Agents targeting EGFR (vIII)
show promising histological accuracy results [48]. It should
be noted, however, that the included studies were extremely
heterogeneous in study design. Furthermore, pre-clinically
tested agents were not used as guidance during surgery in
patients but mostly assessed on their histological accuracy in
ex vivo and in vitro models. A comparison between pre-
clinically and clinically tested agents based on these reports
is therefore not possible.

Previously, three excellent meta-analyses evaluated the ef-
fect FGS on GTR rate and survival [27, 103, 120]. All three
included HGG patients only, however, two of which were
limited to 5-ALA alone [27, 120] and one to 5-ALA, fluores-
cein, and hypericin [103]. One paper comprehensively
reviewed only the clinically tested exogenous agents though
[57]. A more recent systematic review focused on pre-
clinically tested molecular targeting agents for visualizing
GBM tissue [17]. This systematic review does not include
all pre-clinically tested agents, however. To our knowledge,
this is the first paper that systematically reviews all existing
literature on all pre-clinically and clinically tested contrast
agents for FGS in low- and high-grade gliomas.

Challenges in evaluating fluorescent agents and future
research

The evaluation of fluorescent agents has many challenges. For
the purpose of this review, we chose the rate of GTR, PFS,
overall survival, and histological accuracy (sensitivity, specific-
ity, TNR) as outcome measures, because these are the most
frequently reported outcome measures among these studies.
This does not necessarily mean that these are the most appro-
priate measures to evaluate fluorescent agents. As indicated by
Stummer et al. in 2011, the 5-ALA study was designed for
testing the efficacy and safety of 5-ALA as a surgical tool and
a diagnostic drug for glioma surgery. In the process of devel-
oping the 5-ALA study, the European Medical Evaluations
Agency advised to test the agent in a prospective, randomized

setting according to the same standards as those for cytotoxic
drugs [101]. The study of Schebesch et al. in 2013 demonstrat-
ed that FGS can also be evaluated by classifying them as ‘help-
ful’ or ‘not helpful’ by the operating neurosurgeon [86]. Even
though this might be less objective than the outcome measures
included in this review, subjective outcomes like this are nev-
ertheless very helpful for the practicing neurosurgeon.

Furthermore, GTR rate and PFS are radiological outcome
measures used as indicators for clinical outcome. Overall sur-
vival, neurological symptoms, need for re-resection or adju-
vant therapy, and quality-of-life assessments would be exam-
ples of other, perhaps more direct clinical outcomes that could
be used, although these may be more difficult to assess and
quantify. If GTR and PFS are to be used as indicators for
clinical outcome, what would be the cut-off value to pursue?
Residual tumor tissue on the post-operative MRI is shown to
result in a decrease in overall survival, but the absolute differ-
ences in median post-operative tumor volume were very small
(0 cm3 in the 5-ALA group vs. 0.5 cm3 in the control group) in
the two RCTs of Stummer [99, 101]. Defining to what extent
tumor resection is clinically relevant helps not only in stan-
dardizing the definition of GTR for comparison between stud-
ies but also aids in balancing maximal cytoreduction and pres-
ervation of functional outcome.

Well-designed trials to evaluate the safety and effectiveness
of different fluorescent agents before introduction in the clinic
are essential. We recognize, however, that RCTs for this pur-
pose offer specific challenges, and applaud the efforts by
Stummer et al. in evaluating a diagnostic and surgical tool
according to therapeutic standards. Other challenges to be
overcome include the impossibility of a double-blind study
design in this context, as the surgeon cannot be blinded for
the use of fluorescent agents, the potential learning curve in
the clinical application of these products, and inter- and intra-
surgeon variability. Despite these challenges, the results of
both pre-clinical and clinical studies on fluorescent agents
for use in glioma surgery provide a growing body of evidence
of both effectiveness and safety that will likely continue to
develop as these products are transitioned more frequently
into clinical practice.

Conclusions

In FGS for glioma, fluorescent agents should be easy to apply,
safe to use, and tumor-specific. The fluorescent signal should
be strong and easy to detect. Currently, 5-ALA is the only
agent that has been tested in a multi-center RCT and has been
approved for clinical use in certain parts of the world. Other
clinically tested exogenous agents for FGS for glioma include
fluorescein, ICG, AFL-HSA, and hypericin. Despite their con-
tributions to GTR, due to their non-specific mechanism of
action, preclinical research has shifted away from these
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products and towards molecular targeting (e.g., anti-EGFR).
As histological accuracy increases with the improvement of
fluorescent agents, there will be emerging interest in visuali-
zation at the cellular level with imaging systems like confocal
microscopy. Currently, direct comparisons between the vari-
ous agents are not possible and would require additional stud-
ies. Future studies could make such comparisons possible by
using a more standardized, uniform design, with improved
definitions of GTR and a broader set of outcome measures.
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