36 research outputs found

    Structure of the capsular polysaccharide of Acinetobacter baumannii 1053 having the KL91 capsule biosynthesis gene locus

    Get PDF
    © 2014 Elsevier Ltd. All rights reserved. Acinetobacter baumannii 1053 is the type strain for the maintenance of specific bacteriophage AP22, which infects a fairly broad range of A. baumannii strains circulating in Russian clinics and hospitals. A capsular polysaccharide (CPS) was isolated from cells of strain 1053 and studied by sugar analysis along with 1D and 2D 1H and 13C NMR spectroscopy. The following structure of the linear trisaccharide repeating unit was established: →4)-β-D-ManpNAcA-(1→4)-β-D-ManpNAcA-(1→3)-α-D-FucpNAc-(1→ where ManNAcA and FucNAc indicate 2-acetamido-2-deoxymannuronic acid and 2-acetamido-2,6-dideoxygalactose, respectively. A polysaccharide having the same repeating unit but a shorter chain was isolated by the phenol-water extraction of bacterial cells. Sequencing of the CPS biosynthesis gene locus showed that A. baumannii 1053 belongs to a new group designated KL91. The gene functions assigned putatively by a comparison with available databases were in agreement with the CPS structure established

    Targeting of Formyl Peptide Receptor 2 for in vivo imaging of acute vascular inflammation

    Get PDF
    © The author(s). Inflammatory conditions are associated with a variety of diseases and can significantly contribute to their pathophysiology. Neutrophils are recognised as key players in driving vascular inflammation and promoting inflammation resolution. As a result, neutrophils, and specifically their surface formyl peptide receptors (FPRs), are attractive targets for non-invasive visualization of inflammatory disease states and studying mechanistic details of the process. Methods: A small-molecule Formyl Peptide Receptor 2 (FPR2/ALX)-targeted compound was combined with two rhodamine-derived fluorescent tags to form firstly, a targeted probe (Rho-pip-C1) and secondly a targeted, pH-responsive probe (Rho-NH-C1) for in vivo applications. We tested internalization, toxicity and functional interactions with neutrophils in vitro for both compounds, as well as the fluorescence switching response of Rho-NH-C1 to neutrophil activation. Finally, in vivo imaging (fluorescent intravital microscopy [IVM]) and therapeutic efficacy studies were performed in an inflammatory mouse model. Results: In vitro studies showed that the compounds bound to human neutrophils via FPR2/ALX without causing internalisation at relevant concentrations. Additionally, the compounds did not cause toxicity or affect neutrophil functional responses (e.g. chemotaxis or transmigration). In vivo studies using IVM showed Rho-pip-C1 bound to activated neutrophils in a model of vascular inflammation. The pH-sensitive (“switchable”) version termed Rho-NH-C1 validated these findings, showing fluorescent activity only in inflammatory conditions. Conclusions: These results indicate a viable design of fluorescent probes that have the ability to detect inflammatory events by targeting activated neutrophils.British Pharmacological Society; Wilkinson Trust; EPSRC; German Research Foundation

    Structure of the capsular polysaccharide of Acinetobacter baumannii 1053 having the KL91 capsule biosynthesis gene locus

    No full text
    © 2014 Elsevier Ltd. All rights reserved. Acinetobacter baumannii 1053 is the type strain for the maintenance of specific bacteriophage AP22, which infects a fairly broad range of A. baumannii strains circulating in Russian clinics and hospitals. A capsular polysaccharide (CPS) was isolated from cells of strain 1053 and studied by sugar analysis along with 1D and 2D 1H and 13C NMR spectroscopy. The following structure of the linear trisaccharide repeating unit was established: →4)-β-D-ManpNAcA-(1→4)-β-D-ManpNAcA-(1→3)-α-D-FucpNAc-(1→ where ManNAcA and FucNAc indicate 2-acetamido-2-deoxymannuronic acid and 2-acetamido-2,6-dideoxygalactose, respectively. A polysaccharide having the same repeating unit but a shorter chain was isolated by the phenol-water extraction of bacterial cells. Sequencing of the CPS biosynthesis gene locus showed that A. baumannii 1053 belongs to a new group designated KL91. The gene functions assigned putatively by a comparison with available databases were in agreement with the CPS structure established

    Structure of the capsular polysaccharide of Acinetobacter baumannii 1053 having the KL91 capsule biosynthesis gene locus

    Get PDF
    © 2014 Elsevier Ltd. All rights reserved. Acinetobacter baumannii 1053 is the type strain for the maintenance of specific bacteriophage AP22, which infects a fairly broad range of A. baumannii strains circulating in Russian clinics and hospitals. A capsular polysaccharide (CPS) was isolated from cells of strain 1053 and studied by sugar analysis along with 1D and 2D 1H and 13C NMR spectroscopy. The following structure of the linear trisaccharide repeating unit was established: →4)-β-D-ManpNAcA-(1→4)-β-D-ManpNAcA-(1→3)-α-D-FucpNAc-(1→ where ManNAcA and FucNAc indicate 2-acetamido-2-deoxymannuronic acid and 2-acetamido-2,6-dideoxygalactose, respectively. A polysaccharide having the same repeating unit but a shorter chain was isolated by the phenol-water extraction of bacterial cells. Sequencing of the CPS biosynthesis gene locus showed that A. baumannii 1053 belongs to a new group designated KL91. The gene functions assigned putatively by a comparison with available databases were in agreement with the CPS structure established

    Structure of the capsular polysaccharide of Acinetobacter baumannii 1053 having the KL91 capsule biosynthesis gene locus

    No full text
    © 2014 Elsevier Ltd. All rights reserved. Acinetobacter baumannii 1053 is the type strain for the maintenance of specific bacteriophage AP22, which infects a fairly broad range of A. baumannii strains circulating in Russian clinics and hospitals. A capsular polysaccharide (CPS) was isolated from cells of strain 1053 and studied by sugar analysis along with 1D and 2D 1H and 13C NMR spectroscopy. The following structure of the linear trisaccharide repeating unit was established: →4)-β-D-ManpNAcA-(1→4)-β-D-ManpNAcA-(1→3)-α-D-FucpNAc-(1→ where ManNAcA and FucNAc indicate 2-acetamido-2-deoxymannuronic acid and 2-acetamido-2,6-dideoxygalactose, respectively. A polysaccharide having the same repeating unit but a shorter chain was isolated by the phenol-water extraction of bacterial cells. Sequencing of the CPS biosynthesis gene locus showed that A. baumannii 1053 belongs to a new group designated KL91. The gene functions assigned putatively by a comparison with available databases were in agreement with the CPS structure established

    Effects of lipopolysaccharides biosynthesis mutations on K1 polysaccharide association with the Escherichia coli cell surface

    No full text
    The presence of cell-bound K1 capsule and K1 polysaccharide in culture supernatants was determined in a series of inframe nonpolar core biosynthetic mutants from Escherichia coli KT1094 (K1, R1 core lipopolysaccharide [LPS] type) for which the major core oligosaccharide structures were determined. Cell-bound K1 capsule was absent from mutants devoid of phosphoryl modifications on L-glycero-D-manno-heptose residues (HepI and HepII) of the inner-core LPS and reduced in mutants devoid of phosphoryl modification on HepII or devoid of HepIII. In contrast, in all of the mutants, K1 polysaccharide was found in culture supernatants. These results were confirmed by using a mutant with a deletion spanning from the hldD to waaQ genes of the waa gene cluster to which individual genes were reintroduced. A nuclear magnetic resonance (NMR) analysis of core LPS from HepIII-deficient mutants showed an alteration in the pattern of phosphoryl modifications. A cell extract containing both K1 capsule polysaccharide and LPS obtained from an O-antigen-deficient mutant could be resolved into K1 polysaccharide and core LPS by column chromatography only when EDTA and deoxycholate (DOC) buffer were used. These results suggest that the K1 polysaccharide remains cell associated by ionically interacting with the phosphate-negative charges of the core LPS
    corecore