Carbohydrate Research 404 (2015) 79-82

Contents lists available at ScienceDirect

Carbohydrate Research

Note

Structure of the capsular polysaccharide of *Acinetobacter baumannii* 1053 having the KL91 capsule biosynthesis gene locus

arbohydrate ESEARCH

Alexander S. Shashkov^a, Mikhail M. Shneider^b, Sof'ya N. Senchenkova^a, Anastasiya V. Popova^c, Anastasia S. Nikitina^{d,e}, Vladislav V. Babenko^d, Elena S. Kostryukova^{d,f}, Konstantin A. Miroshnikov^b, Nikolay V. Volozhantsev^c, Yuriy A. Knirel^{a,*}

^a N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia

^b M.M. Shemyakin & Y.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

^c State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, Russia

^d Research Institute of Physical–Chemical Medicine, Moscow, Russia

^e Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia

^f Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia

ARTICLE INFO

Article history: Received 14 September 2014 Received in revised form 12 November 2014 Accepted 17 November 2014 Available online 29 November 2014

Keywords:

Acinetobacter baumannii Capsular polysaccharide structure 2-Acetamido-2-deoxy-D-mannuronic acid 2-Acetamido-2,6-dideoxy-D-galactose Polysaccharide biosynthesis gene locus

ABSTRACT

Acinetobacter baumannii 1053 is the type strain for the maintenance of specific bacteriophage AP22, which infects a fairly broad range of *A. baumannii* strains circulating in Russian clinics and hospitals. A capsular polysaccharide (CPS) was isolated from cells of strain 1053 and studied by sugar analysis along with 1D and 2D ¹H and ¹³C NMR spectroscopy. The following structure of the linear trisaccharide repeating unit was established:

 \rightarrow 4)- β -D-ManpNAcA-(1 \rightarrow 4)- β -D-ManpNAcA-(1 \rightarrow 3)- α -D-FucpNAc-(1 \rightarrow

where ManNAcA and FucNAc indicate 2-acetamido-2-deoxymannuronic acid and 2-acetamido-2,6dideoxygalactose, respectively. A polysaccharide having the same repeating unit but a shorter chain was isolated by the phenol–water extraction of bacterial cells. Sequencing of the CPS biosynthesis gene locus showed that *A. baumannii* 1053 belongs to a new group designated KL91. The gene functions assigned putatively by a comparison with available databases were in agreement with the CPS structure established.

© 2014 Elsevier Ltd. All rights reserved.

Recently, *A. baumannii* has become one of the most widespread agents causing health-care associated infections. Treatment of these infections is complicated owing to the ability of the bacteria to acquire and to accumulate various antibiotic resistance mechanisms.¹ *A. baumannii* lacks a long-chain lipopolysaccharide with an O-polysaccharide chain² but has a capsular polysaccharide (CPS) that forms a thick layer around the bacterial cell. The CPS protects *A. baumannii* from the action of immune system components and is considered as an important virulence factor.³ A number of *A. baumannii* CPS structures have been established to date (some under the wrong name of O-antigen or O-specific polysaccharide) (Refs. 4–9 and refs. cited in Ref. 4) but more remain to be elucidated.

Bacteriophages that are able to infect *A. baumannii* represent a promising alternative to antibiotics to control this pathogen. From

http://dx.doi.org/10.1016/j.carres.2014.11.013 0008-6215/© 2014 Elsevier Ltd. All rights reserved. 130 *A. baumannii* isolates collected by us from clinics and hospitals in Russia in 2005–2010, 89 isolates (~68%) were sensitive to Myoviridae bacteriophage AP22,¹⁰ making it suitable for development of anti-acinetobacter preparations. To infect the host bacteriophages have to disrupt the CPS layer, and CPS is the primary receptor for the phage AP22 structural depolymerase/ adsorption protein (data will be published elsewhere). In this work, we studied structure and genetics of the CPS of *A. baumannii* 1053, which is the type strain for the phage AP22 maintenance.

CPS was isolated from cells of *A. baumannii* 1053 by extraction with phosphate-buffered saline containing EDTA. Sugar analysis of CPS by GLC of the acetylated alditols revealed 2-amino-2,6-dide-oxygalactose (fucosamine, FucN). GLC analysis of the acetylated (*S*)-2-octyl glycosides showed that FucN has the D configuration.

The ¹³C NMR spectrum of the CPS (Fig. 1) showed signals for three anomeric carbons at δ 98.9–100.9, CH³–C groups of one 6-deoxyhexose (C-6 of FucN) at δ 16.6 and three *N*-acetyl groups at δ 23.2–23.3, three nitrogen-bearing carbons at δ 48.8–54.7, other

^{*} Corresponding author. Tel.: +7 499 1376148; fax: +7 499 1355328. *E-mail address:* yknirel@gmail.com (Y.A. Knirel).