46 research outputs found
Bordetella pertussis Whole Cell Immunization, Unlike Acellular Immunization, Mimics Naïve Infection by Driving Hematopoietic Stem and Progenitor Cell Expansion in Mice
Hematopoietic stem and progenitor cell (HSPC) compartments are altered to direct immune responses to infection. Their roles during immunization are not well-described. To elucidate mechanisms for waning immunity following immunization with acellular vaccines (ACVs) against Bordetella pertussis (Bp), we tested the hypothesis that immunization with Bp ACVs and whole cell vaccines (WCVs) differ in directing the HSPC characteristics and immune cell development patterns that ultimately contribute to the types and quantities of cells produced to fight infection. Our data demonstrate that compared to control and ACV-immunized CD-1 mice, immunization with an efficacious WCV drives expansion of hematopoietic multipotent progenitor cells (MPPs), increases circulating white blood cells (WBCs), and alters the size and composition of lymphoid organs. In addition to MPPs, common lymphoid progenitor (CLP) proportions increase in the bone marrow of WCV-immunized mice, while B220+ cell proportions decrease. Upon subsequent infection, increases in maturing B cell populations are striking in WCV-immunized mice. RNAseq analyses of HSPCs revealed that WCV and ACV-immunized mice vastly differ in developing VDJ gene segment diversity. Moreover, gene set enrichment analyses demonstrate WCV-immunized mice exhibit unique gene signatures that suggest roles for interferon (IFN) induced gene expression. Also observed in naïve infection, these IFN stimulated gene (ISG) signatures point toward roles in cell survival, cell cycle, autophagy, and antigen processing and presentation. Taken together, these findings underscore the impact of vaccine antigen and adjuvant content on skewing and/or priming HSPC populations for immune response
Intranasal Peptide-Based FpvA-KLH Conjugate Vaccine Protects Mice From Pseudomonas aeruginosa Acute Murine Pneumonia
Pseudomonas aeruginosa is an opportunistic pathogen causing acute and chronic respiratory infections associated with morbidity and mortality, especially in patients with cystic fibrosis. Vaccination against P. aeruginosa before colonization may be a solution against these infections and improve the quality of life of at-risk patients. To develop a vaccine against P. aeruginosa, we formulated a novel peptide-based P. aeruginosa subunit vaccine based on the extracellular regions of one of its major siderophore receptors, FpvA. We evaluated the effectiveness and immunogenicity of the FpvA peptides conjugated to keyhole limpet hemocyanin (KLH) with the adjuvant curdlan in a murine vaccination and challenge model. Immunization with the FpvA-KLH vaccine decreased the bacterial burden and lung edema after P. aeruginosa challenge. Vaccination with FpvA-KLH lead to antigen-specific IgG and IgM antibodies in sera, and IgA antibodies in lung supernatant. FpvA-KLH immunized mice had an increase in recruitment of CD11b+ dendritic cells as well as resident memory CD4+ T cells in the lungs compared to non-vaccinated challenged mice. Splenocytes isolated from vaccinated animals showed that the FpvA-KLH vaccine with the adjuvant curdlan induces antigen-specific IL-17 production and leads to a Th17 type of immune response. These results indicate that the intranasal FpvA-KLH conjugate vaccine can elicit both mucosal and systemic immune responses. These observations suggest that the intranasal peptide-based FpvA-KLH conjugate vaccine with curdlan is a potential vaccine candidate against P. aeruginosa pneumonia
Intranasal Acellular Pertussis Vaccine Provides Mucosal Immunity and Protects Mice from Bordetella Pertussis
Current acellular pertussis vaccines fall short of optimal protection against the human respiratory pathogen Bordetella pertussis resulting in increased incidence of a previously controlled vaccine- preventable disease. Natural infection is known to induce a protective mucosal immunity. Therefore, in this study, we aimed to use acellular pertussis vaccines to recapitulate these mucosal immune responses. We utilized a murine immunization and challenge model to characterize the efficacy of intranasal immunization (IN) with DTaP vaccine or DTaP vaccine supplemented with curdlan, a known Th1/Th17 promoting adjuvant. Protection from IN delivered DTaP was compared to protection mediated by intraperitoneal injection of DTaP and whole-cell pertussis vaccines. We tracked fluorescently labeled DTaP after immunization and detected that DTaP localized preferentially in the lungs while DTaP with curdlan was predominantly in the nasal turbinates. IN immunization with DTaP, with or without curdlan adjuvant, resulted in anti-B. pertussis and anti-pertussis toxin IgG titers at the same level as intraperitoneally administered DTaP. IN immunization was able to protect against B. pertussis challenge and we observed decreased pulmonary pro-inflammatory cytokines, neutrophil infiltrates in the lung, and bacterial burden in the upper and lower respiratory tract at day 3 post challenge. Furthermore, IN immunization with DTaP triggered mucosal immune responses such as production of B. pertussis-specific IgA, and increased IL-17A. Together, the induction of a mucosal immune response and humoral antibody-mediated protection associated with an IN administered DTaP and curdlan adjuvant warrant further exploration as a pertussis vaccine candidate formulation
Activating mutations of STAT5B and STAT3 in lymphomas derived from gamma delta-T or NK cells
Peer reviewe
Bordetella pertussis Whole Cell Immunization, Unlike Acellular Immunization, Mimics Naïve Infection by Driving Hematopoietic Stem and Progenitor Cell Expansion in Mice
Hematopoietic stem and progenitor cell (HSPC) compartments are altered to direct immune responses to infection. Their roles during immunization are not well-described. To elucidate mechanisms for waning immunity following immunization with acellular vaccines (ACVs) against Bordetella pertussis (Bp), we tested the hypothesis that immunization with Bp ACVs and whole cell vaccines (WCVs) differ in directing the HSPC characteristics and immune cell development patterns that ultimately contribute to the types and quantities of cells produced to fight infection. Our data demonstrate that compared to control and ACV-immunized CD-1 mice, immunization with an efficacious WCV drives expansion of hematopoietic multipotent progenitor cells (MPPs), increases circulating white blood cells (WBCs), and alters the size and composition of lymphoid organs. In addition to MPPs, common lymphoid progenitor (CLP) proportions increase in the bone marrow of WCV-immunized mice, while B220+ cell proportions decrease. Upon subsequent infection, increases in maturing B cell populations are striking in WCV-immunized mice. RNAseq analyses of HSPCs revealed that WCV and ACV-immunized mice vastly differ in developing VDJ gene segment diversity. Moreover, gene set enrichment analyses demonstrate WCV-immunized mice exhibit unique gene signatures that suggest roles for interferon (IFN) induced gene expression. Also observed in naïve infection, these IFN stimulated gene (ISG) signatures point toward roles in cell survival, cell cycle, autophagy, and antigen processing and presentation. Taken together, these findings underscore the impact of vaccine antigen and adjuvant content on skewing and/or priming HSPC populations for immune response
Trends in distance education research: A content analysis of journals 2009-2013
This study intends to explore the current trends in the field of distance education research during the period of 2009-2013. The trends were identified by an extensive review of seven peer reviewed scholarly journals: The American Journal of Distance Education (AJDE), Distance Education (DE), The European Journal of Open, Distance and e-Learning (EURODL), The Journal of Distance Education (JDE), The Journal of Online Learning and Technology (JOLT), Open Learning: The Journal of Open, Distance and e-Learning (OL) and The International Review of Research in Open and Distributed Learning (IRRODL). A total of 861 research articles was reviewed. Mainly content analysis was employed to be able to analyze the current research. Also, a social network analysis (SNA) was used to interpret the interrelationship between keywords indicated in these articles. Themes were developed and the content of the articles in the selected journals were coded according to categories derived from earlier studies. The results were interpreted using descriptive analysis (frequencies) and social network analysis. The reporting of the results were organized into the following categories: research areas, theoretical and conceptual frameworks, variables, methods, models, strategies, data collection and analysis methods, and the participants. The study also identified the most commonly used keywords, and the most frequently cited authors and studies in distance education. The findings obtained in this study may be useful in the exploration of potential research areas and identification of neglected areas in the field of distance education
Time and Poverty from a Developing Country Perspective
This study is concerned with the measurement of poverty in the context of developing countries. We argue that poverty rankings must take into account time use dimensions of paid and unpaid work jointly. Reviewing the current state of the literature on this topic, our methodology introduces a critical but missing analytical distinction between time poverty and time deprivation. On this basis, we proceed to provide empirical evidence by using South African time use survey data compiled in 2000. Our findings show that existing methods that work well for advanced countries require modification when adopted in the case of a developing country. The results identify a group of adults who previously were inadvertently missing, as they were considered 'time wealthy.
Intranasal acellular pertussis vaccine provides mucosal immunity and protects mice from <i>Bordetella pertussis</i>
Current acellular pertussis vaccines fall short of optimal protection against the human respiratory pathogen Bordetella pertussis resulting in increased incidence of a previously controlled vaccine- preventable disease. Natural infection is known to induce a protective mucosal immunity. Therefore, in this study, we aimed to use acellular pertussis vaccines to recapitulate these mucosal immune responses. We utilized a murine immunization and challenge model to characterize the efficacy of intranasal immunization (IN) with DTaP vaccine or DTaP vaccine supplemented with curdlan, a known Th1/Th17 promoting adjuvant. Protection from IN delivered DTaP was compared to protection mediated by intraperitoneal injection of DTaP and whole-cell pertussis vaccines. We tracked fluorescently labeled DTaP after immunization and detected that DTaP localized preferentially in the lungs while DTaP with curdlan was predominantly in the nasal turbinates. IN immunization with DTaP, with or without curdlan adjuvant, resulted in anti-B. pertussis and anti-pertussis toxin IgG titers at the same level as intraperitoneally administered DTaP. IN immunization was able to protect against B. pertussis challenge and we observed decreased pulmonary pro-inflammatory cytokines, neutrophil infiltrates in the lung, and bacterial burden in the upper and lower respiratory tract at day 3 post challenge. Furthermore, IN immunization with DTaP triggered mucosal immune responses such as production of B. pertussis-specific IgA, and increased IL-17A. Together, the induction of a mucosal immune response and humoral antibody-mediated protection associated with an IN administered DTaP and curdlan adjuvant warrant further exploration as a pertussis vaccine candidate formulation.Facultad de Ciencias ExactasInstituto de Biotecnologia y Biologia Molecula
Understanding the host immune response against Pseudomonas aeruginosa to develop novel therapeutics and vaccines
Pseudomonas aeruginosa is a Gram-negative opportunistic bacterium that causes a broad range of acute and chronic infections. The high adaptability and emergence of multidrug-resistant strains of this bacterium pose a significant threat to human health. Particularly, pneumonia caused by this pathogen is associated with high morbidity and mortality in immunocompromised patients. To prevent these infections, we aimed to develop novel vaccine strategies by characterizing the host immune response against P. aeruginosa. During respiratory infections, P. aeruginosa first contacts with epithelial cells along the respiratory tract. Using RNA-sequencing, we were able to characterize transcriptional changes of the epithelial cells in response to P. aeruginosa. We observed that epithelial cells differentially upregulate immediate early response genes, that are crucial to mediate downstream pro-inflammatory responses during P. aeruginosa infection. To validate our in vitro observations, we performed acute infection studies using a mouse model of pneumonia. We observed that P. aeruginosa challenged mice had lung edema, high level of proinflammatory cytokines and neutrophils in their lungs. To prevent acute pneumonia caused by P. aeruginosa, and develop a protective vaccine against this pathogen, we characterized vaccine-mediated immune responses using the whole-cell P. aeruginosa vaccine. We found that B cells and antigen-specific antibodies are required for protection against this bacterium. Based on this work, we developed a novel intranasal P. aeruginosa vaccine containing peptides from the ferripyoverdine receptor FpvA conjugated with the carrier protein KLH. The FpvA-KLH vaccine decreased bacterial burden and lung edema upon challenge. We observed that FpvA-KLH vaccinated mice induced Th17 type immune response, tissue-resident memory T cells, and significant antibody titers against P. aeruginosa. The antibodies elicited against this bacterium were able to mediate opsonophagocytic killing. Together, these findings establish a foundation for potential vaccine strategies and possible alternative therapeutics against this bacterium and illuminate a better understanding of the host responses elicited against P. aeruginosa