462 research outputs found

    Topological engineering of interfacial optical Tamm states for highly-sensitive near-singular-phase optical detection

    Get PDF
    We developed planar multilayered photonic-plasmonic structures, which support topologically protected optical states on the interface between metal and dielectric materials, known as optical Tamm states. Coupling of incident light to the Tamm states can result in perfect absorption within one of several narrow frequency bands, which is accompanied by a singular behavior of the phase of electromagnetic field. In the case of near-perfect absorptance, very fast local variation of the phase can still be engineered. In this work, we theoretically and experimentally demonstrate how these drastic phase changes can improve sensitivity of optical sensors. A planar Tamm absorber was fabricated and used to demonstrate remote near-singular-phase temperature sensing with an over an order of magnitude improvement in sensor sensitivity and over two orders of magnitude improvement in the figure of merit over the standard approach of measuring shifts of resonant features in the reflectance spectra of the same absorber. Our experimentally demonstrated phase-to-amplitude detection sensitivity improvement nearly doubles that of state-of-the-art nano-patterned plasmonic singular-phase detectors, with further improvements possible via more precise fabrication. Tamm perfect absorbers form the basis for robust planar sensing platforms with tunable spectral characteristics, which do not rely on low-throughput nano-patterning techniques.Comment: 31 pages; 6 main text figures and 10 supplementary figure

    Topological Darkness of Tamm Plasmons for High-Sensitivity Singular-Phase Optical Detection

    Get PDF
    Multilayered photonic-plasmonic structures exhibit topologically protected zero reflection if they are designed to support Tamm plasmon modes. Sharp phase changes associated with the Tamm mode excitation dramatically improve sensitivity of detectors

    Femtosecond primary charge separation in Synechocystis sp. PCC 6803 photosystem I

    Get PDF
    AbstractThe ultrafast (<100fs) conversion of delocalized exciton into charge-separated state between the primary donor P700 (bleaching at 705nm) and the primary acceptor A0 (bleaching at 690nm) in photosystem I (PS I) complexes from Synechocystis sp. PCC 6803 was observed. The data were obtained by application of pump–probe technique with 20-fs low-energy pump pulses centered at 720nm. The earliest absorbance changes (close to zero delay) with a bleaching at 690nm are similar to the product of the absorption spectrum of PS I complex and the laser pulse spectrum, which represents the efficiency spectrum of the light absorption by PS I upon femtosecond excitation centered at 720nm. During the first ∼60fs the energy transfer from the chlorophyll (Chl) species bleaching at 690nm to the Chl bleaching at 705nm occurs, resulting in almost equal bleaching of the two forms with the formation of delocalized exciton between 690-nm and 705-nm Chls. Within the next ∼40fs the formation of a new broad band centered at ∼660nm (attributed to the appearance of Chl anion radical) is observed. This band decays with time constant simultaneously with an electron transfer to A1 (phylloquinone). The subtraction of kinetic difference absorption spectra of the closed (state P700+A0A1) PS I reaction center (RC) from that of the open (state P700A0A1) RC reveals the pure spectrum of the P700+A0− ion–radical pair. The experimental data were analyzed using a simple kinetic scheme: An* →k1 [(PA0)*A1→<100fs P+A0−A1] →k2P+A0A1−, and a global fitting procedure based on the singular value decomposition analysis. The calculated kinetics of transitions between intermediate states and their spectra were similar to the kinetics recorded at 694 and 705nm and the experimental spectra obtained by subtraction of the spectra of closed RCs from the spectra of open RCs. As a result, we found that the main events in RCs of PS I under our experimental conditions include very fast (<100fs) charge separation with the formation of the P700+A0−A1 state in approximately one half of the RCs, the ∼5-ps energy transfer from antenna Chl* to P700A0A1 in the remaining RCs, and ∼25-ps formation of the secondary radical pair P700+A0A1−

    Mitochondriotropic and Cardioprotective Effects of Triphenylphosphonium-Conjugated Derivatives of the Diterpenoid Isosteviol

    Get PDF
    Mitochondria play a crucial role in the cell fate; in particular, reducing the accumulation of calcium in the mitochondrial matrix offers cardioprotection. This affect is achieved by a mild depolarization of the mitochondrial membrane potential, which prevents the assembly and opening of the mitochondrial permeability transition pore. For this reason, mitochondria are an attractive target for pharmacological interventions that prevent ischaemia/reperfusion injury. Isosteviol is a diterpenoid created from the acid hydrolysis of Steviarebaudiana Bertoni (fam. Asteraceae) glycosides that has shown protective effects against ischaemia/reperfusion injury, which are likely mediated through the activation of mitochondrial adenosine tri-phosphate (ATP)-sensitive potassium (mitoKATP) channels. Some triphenylphosphonium (triPP)-conjugated derivatives of isosteviol have been developed, and to evaluate the possible pharmacological benefits that result from these synthetic modifications, in this study, the mitochondriotropic properties of isosteviol and several triPP-conjugates were investigated in rat cardiac mitochondria and in the rat heart cell line H9c2. This study's main findings highlight the ability of isosteviol to depolarize the mitochondrial membrane potential and reduce calcium uptake by the mitochondria, which are typical functions of mitochondrial potassium channel openings. Moreover, triPP-conjugated derivatives showed a similar behavior to isosteviol but at lower concentrations, indicative of their improved uptake into the mitochondrial matrix. Finally, the cardioprotective property of a selected triPP-conjugated derivative was demonstrated in an in vivo model of acute myocardial infarct

    Arctic climate change: observed and modelled temperature and sea-ice variability

    Get PDF
    Changes apparent in the arctic climate system in recent years require evaluation in a century-scale perspective in order to assess the Arctic's response to increasing anthropogenic greenhouse-gas forcing. Here, a new set of century- and multidecadal-scale observational data of surface air temperature (SAT) and sea ice is used in combination with ECHAM4 and HadCM3 coupled atmosphere-ice-ocean global model simulations in order to better determine and understand arctic climate variability. We show that two pronounced twentieth-century warming events, both amplified in the Arctic, were linked to sea-ice variability. SAT observations and model simulations indicate that the nature of the arctic warming in the last two decades is distinct from the early twentieth-century warm period. It is suggested strongly that the earlier warming was natural internal climate-system variability, whereas the recent SAT changes are a response to anthropogenic forcing. The area of arctic sea ice is furthermore observed to have decreased similar to8 x 10(5) km(2) (7.4%) in the past quarter century, with record-low summer ice coverage in September 2002. A set of model predictions is used to quantify changes in the ice cover through the twenty-first century, with greater reductions expected in summer than winter. In summer, a predominantly sea-ice-free Arctic is predicted for the end of this century

    Step bunching with both directions of the current: Vicinal W(110) surfaces versus atomistic scale model

    Get PDF
    We report for the first time the observation of bunching of monoatomic steps on vicinal W(110) surfaces induced by step up or step down currents across the steps. Measurements reveal that the size scaling exponent {\gamma}, connecting the maximal slope of a bunch with its height, differs depending on the current direction. We provide a numerical perspective by using an atomistic scale model with a conserved surface flux to mimic experimental conditions, and also for the first time show that there is an interval of parameters in which the vicinal surface is unstable against step bunching for both directions of the adatom drift.Comment: 17 pages, 10 figure

    Synthesis and properties of the heterospin (S1 = S2 = 1/2) radical-ion salt bis(mesitylene)molybdenum(I) [1,2,5]thiadiazolo[3,4-c][1,2,5]thiadiazolidyl

    Get PDF
    The authors are grateful to the Presidium of the Russian Academy of Sciences (Project 8.14), the Royal Society (RS International Joint Project 2010/R3), the Leverhulme Trust (Project IN-2012-094), the Siberian Branch of the Russian Academy of Sciences (Project 13), the Ministry of Education and Science of the Russian Federation (Project of Joint Laboratories of Siberian Branch of the Russian Academy of Sciences and National Research Universities), and the Russian Foundation for Basic Research (Projects 13-03-00072 and 15-03-03242) for financial support of various parts of this work. N.A.S. thanks the Council for Grants of the President of Russian Federation for postdoctoral scholarship (grant MK-4411.2015.3). B.E.B. is grateful for an EaStCHEM Hirst Academic Fellowship. A.V.Z. thanks the Foundation named after D. I. Mendeleev, Tomsk State University, for support of his work.Low-temperature interaction of [1,2,5]thiadiazolo[3,4-c][1,2,5]thiadiazole (1) with MoMes2 (Mes = mesitylene / 1,3,5-trimethylbenzene) in tetrahydrofuran gave the heterospin (S1 = S2 = 1/2) radical-ion salt [MoMes2]+[1]– (2) whose structure was confirmed by single-crystal X-ray diffraction (XRD). The structure revealed alternating layers of the cations and anions with the Mes ligands perpendicular, and the anions tilted by 45°, to the layer plane. At 300 K the effective magnetic moment of 2 is equal to 2.40 μB (theoretically expected 2.45 μB) and monotonically decreases with lowering of the temperature. In the temperature range 2−300 K, the molar magnetic susceptibility of 2 is well-described by the Curie-Weiss law with parameters C and θ equal to 0.78 cm3⋅K⋅mol–1 and −31.2 K, respectively. Overall, the magnetic behavior of 2 is similar to that of [CrTol2]+[1]– and [CrCp*2]+[1]–, i.e. changing the cation [MAr2]+ 3d atom M = Cr (Z = 24) with weak spin-orbit coupling (SOC) to a 4d atom M = Mo (Z = 42) with stronger SOC does not affect macroscopic magnetic properties of the salts. For the XRD structure of salt 2, parameters of the Heisenberg spin-Hamiltonian were calculated using the broken-symmetry DFT and CASSCF approaches, and the complex 3D magnetic structure with both the ferromagnetic (FM) and antiferromagnetic (AF) exchange interactions was revealed with the latter as dominating. Salt 2 is thermally unstable and slowly loses the Mes ligands upon storage at ambient temperature. Under the same reaction conditions, interaction of 1 with MoTol2 (Tol = toluene) proceeded with partial loss of the Tol ligands to afford diamagnetic product.PostprintPostprintPeer reviewe

    Design, Performance, and Calibration of CMS Hadron Endcap Calorimeters

    Get PDF
    Detailed measurements have been made with the CMS hadron calorimeter endcaps (HE) in response to beams of muons, electrons, and pions. Readout of HE with custom electronics and hybrid photodiodes (HPDs) shows no change of performance compared to readout with commercial electronics and photomultipliers. When combined with lead-tungstenate crystals, an energy resolution of 8\% is achieved with 300 GeV/c pions. A laser calibration system is used to set the timing and monitor operation of the complete electronics chain. Data taken with radioactive sources in comparison with test beam pions provides an absolute initial calibration of HE to approximately 4\% to 5\%
    corecore