77 research outputs found

    Measurement of the production cross-section of positive pions in the collision of 8.9 GeV/c protons on beryllium

    Get PDF
    The double-differential production cross-section of positive pions, d2σπ+/dpdΩd^2\sigma^{\pi^{+}}/dpd\Omega, measured in the HARP experiment is presented. The incident particles are 8.9 GeV/c protons directed onto a beryllium target with a nominal thickness of 5% of a nuclear interaction length. The measured cross-section has a direct impact on the prediction of neutrino fluxes for the MiniBooNE and SciBooNE experiments at Fermilab. After cuts, 13 million protons on target produced about 96,000 reconstructed secondary tracks which were used in this analysis. Cross-section results are presented in the kinematic range 0.75 GeV/c < pπp_{\pi} < 6.5 GeV/c and 30 mrad < θπ\theta_{\pi} < 210 mrad in the laboratory frame.Comment: 39 pages, 21 figures. Version accepted for publication by Eur. Phys. J.

    Melatonin inhibira lipidnu peroksidaciju u jetri štakora uzrokovanu benzenom

    Get PDF
    We studied the antioxidative role of melatonin against benzene toxicity in rat liver. The inhibition of mitochondrial and microsomal lipid peroxidation differed between 24-hour (single-dose), 15-day, and 30-day treatments. Inhibition of mitochondrial lipid peroxidation was the highest after the single dose of melatonin, whereas highest microsomal inhibition was recorded after 30 days of melatonin treatment. No signifi cant difference was recorded between 15-day and 30-day treatments. Cytochrome P4502E1 (CYP4502E1) activity declined after the single-dose and 15-day melatonin treatment in the benzenetreated group, but it rose again, though not signifi cantly after 30 days of treatment. Liver histopathology generally supported these fi ndings. Phenol concentration in the urine samples declined in melatonin and benzene-treated rats. Our results show that melatonin affects CYP4502E1, which is responsible for benzene metabolism. Inhibition of its metabolism correlated with lower lipid peroxidation. In conclusion, melatonin was found to be protective against lipid peroxidation induced by benzene.Istražena je antioksidacijska uloga melatonina u zaštiti protiv toksičnoga djelovanja benzena u jetri štakora. Utvrđeno je da kratkoročno odnosno dugoročnije liječenje štakora melatoninom u različitoj mjeri štiti štakore istodobno izložene benzenu. Inhibicija lipidne peroksidacije mitohondrija i mikrosoma bila je različita nakon 24 h, 15 dana, odnosno 30 dana liječenja melatoninom. Najveća inhibicija lipidne peroksidacije mitohondrija zamijećena je nakon primjene jednokratne doze melatonina, dok je najizraženija inhibicija u mikrosomima zamijećena nakon 30 dana liječenja melatoninom. Slična istraživanja pokazuju da razina glutationa (GSH) najviše raste nakon 24 h liječenja melatoninom. Nije zamijećena razlika između liječenja u trajanju od 15 odnosno 30 dana. U štakora koji su uz benzen istodobno primali i melatonin razine citokroma P4502E1 pale su nakon 24 h odnosno 15 dana izloženosti. U štakora koji su primali samo melatonin te su razine nakon 30 dana statistički neznačajno porasle u odnosu na skupinu izloženu samo benzenu. Histopatološka analiza jetre načelno je potvrdila ove nalaze. Koncentracije fenola u mokraći bile su niže u štakora koji su istodobno primali melatonin i benzen. Ovi rezultati pokazuju da melatonin utječe na citokrom P4502E1, koji je odgovoran za metabolizam benzena. Inhibira li se njegov metabolizam, smanjuje se lipidna peroksidacija. Zaključak je da melatonin štiti od lipidne peroksidacije uzrokovane benzenom

    Xenobiotic-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models

    Get PDF

    Experimental investigation of hydrodynamics of melt layer during laser cutting of steel

    Get PDF
    In laser cutting process, understanding of hydrodynamics of melt layer is significant, because it is an important factor which controls the final quality. In this work, we observed hydrodynamics of melt layer on kerf front in the case of laser cutting of steel with inert gas. The observation shows that the melt flow on the kerf front exhibits strong instability, depending on cutting velocity. In intermediate range of velocity, the flow on the central part of the kerf front is continuous, whereas the flow along the sides is discontinuous. It is firstly confirmed that the instability in the side flow is the cause of the striation initiation from the top part of the kerf. The origin of the instability is discussed in terms of instabilities in thermal dynamics and hydrodynamics. The proposed model shows reasonable agreement with experimental results

    Measurement of laser absorptivity for operating parameters characteristic of laser drilling regime

    Get PDF
    Publisher version : http://iopscience.iop.org/0022-3727/41/15/155502/Laser drilling in the percussion regime is commonly used in the aircraft industry to drill sub-millimetre holes in metallic targets. Characteristic laser intensities in the range of 10 MW cm−2 are typically employed for drilling metallic targets. With these intensities the temperature of the irradiated matter is above the vaporization temperature and the drilling process is led by hydrodynamic effects. Although the main physical processes involved are identified, this process is not correctly understood or completely controlled. A major characteristic coefficient of laser–matter interaction for this regime, which is the absorptivity of the laser on the irradiated surface, is still unknown, because of the perturbing effects due to laser beam geometrical trapping inside the drilled hole. So, by using time resolved experiments, this study deals with the direct measurement of the variation of the intrinsic absorption of aluminium, nickel and steel materials, as a function of the incident laser intensity up to 20 MW cm−2. We observe that for this incident intensity, the absorptivity can reach up to 80%. This very high and unexpected value is discussed by considering the microscopic behaviour of the heated matter near the vapour–liquid interface that undergoes possible Rayleigh–Taylor instability or volume absorptio
    corecore