22 research outputs found

    Lyijyn kulkeutuminen ja vaikutukset metsäekosysteemissä uudella ja vanhalla ampumarata-alueella

    Get PDF
    Despite the known toxicity of lead (Pb) and the ban on waterfowl hunting, Pb pellets are still used at shotgun shooting ranges around the world. After firing a shotgun, pellets spread across wide areas, ending up in nearby ecosystems, which typically are forests in Finland. Still, little is known about the effects of Pb in these ecosystems and hardly anything about changes in ecosystem structure and function after range abandonment. Thus, ecosystem-level research was conducted in a shotgun shooting range area to evaluate the fate and effects of Pb in a boreal forest ecosystem and the possible recovery of the system after range abandonment. Bioaccumulation, the leaching and vertical distribution of Pb in the soil, soil nutrients and their leaching as well as structure and activity of decomposer community were studied at two contaminated sites (active [NC] and abandoned [OC] shooting ranges) and a control site, each locating in the same pine forest stand. Furthermore, tree growth, nutritional status and litter production were measured. Total Pb pellet burdens at the contaminated sites were similar, reaching up to 4 kg m-2, and shooting activity had lasted for 20 years at both sites, but occurred 20 years earlier at OC. Total Pb concentrations at the shooting ranges were extremely high, and Pb accumulated in the biota. The vertical distribution of Pb in the organic soil horizon differed between the shooting range sites, with total Pb concentrations at NC being higher in the upper F layer than in the lower H layer, but vice versa at OC. Soil fungi and all studied faunal groups (enchytraeid worms, microarthropods and nematodes) except protozoans were affected negatively by Pb. Lead decreased phosphate (PO43-) and increased nitrate (NO3-) concentrations. pH was also increased by Pb, which can further affect the biota directly or indirectly by changing Pb availability and toxicity. In the entire organic soil horizon, the negative effects of Pb were less pronounced at OC than at NC. In addition, pine needle litter decomposed faster at OC than at NC, and tree (Pinus sylvestris) radial growth was suppressed at NC after shooting activity started and increased at OC after shooting activity ceased. However, in the H layer the effects were stronger at OC, enchytraeid worms being completely absent. Furthermore, leaching of Pb through the organic soil horizon was twice as high at OC as at NC. A decrease in total Pb concentrations and toxicity in the topmost soil layer and enhanced litter decomposition rate at the abandoned shooting range indicate an on-going recovery process. In boreal forest soils that are characterized by low decomposition rates and little soil mixing due to the scarcity of earthworms, a less contaminated soil layer is gradually formed when shooting activities cease. This topmost soil layer can provide habitat for the decomposer biota and promote the recovery of soil functions. However, at the same time the dissolution of Pb from pellets deeper in the soil increases toxicity of the humus and the leaching of Pb, increasing risks to the ecosystem and groundwater quality. These findings suggest that communities and functions in Pb-contaminated boreal forest ecosystems depend on contamination history. However, despite Pb-induced changes in the decomposer communities, only slight changes in ecosystem processes were detected. This indicates high resistance of boreal forest ecosystems to this type of stress.Lyijyn on todettu olevan eliöille haitallista, ja vaikka lyijyhaulien käyttö vesilintujen metsästyksessä on kielletty, niitä käytetään edelleen ampumarata-alueilla maailmanlaajuisesti. Ampumaradoilta haulit pääsevät helposti leviämään ympäröivään luontoon, joka Suomessa yleensä on kangasmetsää. Lyijyn vaikutuksista näissä ympäristöissä tiedetään kuitenkin vain vähän, ja vielä vähemmän on tietoa siitä, miten lyijyn vaikutukset muuttuvat ajan myötä ampumistoiminnan päätyttyä, kun lyijyhaulit ovat jääneet maaperään. Tässä väitöskirjatyössä tutkittiin lyijyn kulkeutumista ja vaikutuksia ampumarata-aluetta ympäröivässä metsäekosysteemissä aina maaperän eloperäisestä maakerroksesta (5 8 cm) ja maaperäeliöistä metsän puustoon. Lisäksi tarkasteltiin, miten nämä vaikutukset muuttuvat ajan myötä vertailemalla kahta samassa kangasmetsässä sijaitsevaa tutkimusaluetta. Toiselle näistä alueista kulkeutuu hauleja edelleen käytössä olevalta ampumaradalta (uusi rata), kun taas toisella alueella ampumistoiminta loppui noin kaksikymmentä vuotta ennen tämän tutkimuksen alkua (vanha rata). Molemmilla alueilla oli enimmillään jopa 4 kg lyijyhauleja yhtä neliömetriä kohti. Eloperäisen maakerroksen lyijypitoisuudet sekä vanhalla että uudella radalla olivat huomattavan korkeita ja kohonneita lyijypitoisuuksia todettiin myös maaperäeläimissä ja alueiden kasveissa. Lyijy oli myös vähentänyt maaperän sienibiomassaa sekä useiden maaperäeläinryhmien runsautta. Vaikka maaperäeliöstöllä on tärkeä merkitys hajotustoiminnassa ja ravinteiden vapauttamisessa edelleen kasvien saataville, lyijyn vaikutukset maaperän hajotustoimintaan olivat vähäisiä. Tämä osoittaa, että systeemi pystyy toimimaan suhteellisen hyvin häiriöstä huolimatta. Lyijy vaikutti myös eloperäisen maakerroksen ominaisuuksiin: maaperän pH ja nitraattipitoisuus kohosivat ja fosfaattipitoisuus laski lyijyn vaikutuksesta. Maaperän pH:n nousu voi edelleen vaikuttaa maaperän eliöstöön ja osittain selittää sienibiomassan vähentymistä ja nitraatin lisääntymistä maaperässä. Toisaalta kohonnut pH voi vähentää lyijyn saatavuutta joillekin eliöille. Uuden ja vanhan radan vertailu osoitti, että lyijy painuu maaperässä ajan myötä syvemmälle. Lyijyhaulit vajoavat vuosikymmenten saatossa ja hautautuvat hajoavasta karikkeesta muodostuvaan eloperäiseen maa-ainekseen. Vähemmän lyijyä sisältävässä pintamaassa maaperän eliöiden runsauden ja karikkeen hajotusnopeuden todettiin lisääntyneen. Toisaalta syvemmällä eloperäisessä maakerroksessa (humuskerroksessa) lyijypitoisuudet olivat ajan myötä kasvaneet lyijyhaulien rapautuessa. Tämän todettiin myös lisänneen haittavaikutuksia maaperäeliöstölle kangasmetsämaan tärkeimpänä hajottajaeläimenä pidettyä änkyrimatoihin kuuluvaa kunttamatoa ei havaittu vanhan radan humuskerroksessa lainkaan. Lisäksi vanhalla radalla eloperäisestä maa-aineksesta huuhtoutui lyijyä noin kaksi kertaa runsaammin kuin uudella radalla. Tämän väitöskirjatyön tulokset osoittavat, että vaikka pintamaan eliöstö ja hajotustoiminta voivat palautua ajan myötä ampumaradan toiminnan päätyttyä, syvemmällä maaperässä eliöstön tila voi heikentyä ja lyijyn pohjaveteen huuhtoutumisen riski kasvaa

    Chemical leaching from polyethylene mulching films to soil in strawberry farming

    Get PDF
    Mulching is a widely practiced agricultural technique able to boost crop productivity and to reduce weed growth and water evaporation. One of the most common materials used for mulching is polyethylene. Polyethylene films are known to contain phthalates, plasticizers recognized as endocrine disruptors, thus able to endanger the hormonal system. Only few data exist on the possible transfer of plasticizers from polyethylene mulching films to agricultural soil, especially in Europe, or on the potential implications for the environment and human health. In this study, we analyzed the occurrence of plasticizers such as phthalates and acetyl tributyl citrate from polyethylene mulching films and soil samples collected from strawberry fields where polyethylene films have been used. The samples were analyzed with a gas chromatograph-mass spectrometer and the results indicated that the soil exposed to polyethylene mulches contained a significantly higher concentration, compared to the control soil, of some of the most common plasticizers, including dibuthyl phthalate, benzylbutyl phthalate and acetyl tributyl citrate. These outcomes highlight the need to carry out further research to understand the potential risks that mulching practices can cause for the environment and human health.Peer reviewe

    Microplastics, chlorpyrifos and their mixtures modulate immune processes in the terrestrial crustacean Porcellio scaber

    Get PDF
    Highlights • Immune parameters are slightly changed upon exposure to plastic fibres or crumb rubber. • Chlorpyrifos caused significant changes in Porcellio scaber immune parameters. • Microplastics decreased the bioavailability of chlorpyrifos for P. scaber. • Mixtures of plastic fibres and chlorpyrifos resulted in greater response in haemocyte count.Microplastics and agrochemicals are common pollutants in terrestrial ecosystems. Their interaction during coexistence in soils may influence their fate and adverse effects on terrestrial organisms. The aim of this study was to investigate how the exposure to two types of microplastics; polyester fibres, and crumb rubber; induce changes in immune parameters of Porcellio scaber and if the co-exposure of microplastics affects the response induced by the organophosphate pesticide chlorpyrifos. A number of immune parameters, such as total haemocyte count, differential haemocyte count, and phenoloxidase-like activity were assessed. In addition, the acetylcholinesterase (AChE) activity in the haemolymph was evaluated as a measure of the bioavailability of chlorpyrifos. After three weeks of exposure, the most noticeable changes in the measured immune parameters and also a significantly reduced AChE activity were seen in chlorpyrifos-exposed animals. Both types of microplastic at environmentally relevant concentrations caused only slight changes in immune parameters which were not dependent on the type of microplastic, although the two types differed significantly in terms of the chemical complexity of the additives. Mixtures of chlorpyrifos and microplastics induced changes that differed from individual exposures. For example, alterations in some measured parameters suggested a reduced bioavailability of chlorpyrifos (AChE activity, haemocyte viability) caused by both types of microplastics exposure, but the increase of haemocyte count was promoted by the presence of fibres implying their joint action. In conclusion, this study suggests that immune processes in P. scaber are slightly changed upon exposure to both types of microplastics and microplastics can significantly modulate the effects of other co-exposed chemicals. Further research is needed on the short-term and long-term joint effects of microplastics and agrochemicals on the immunity of soil invertebrates

    Exploring the impacts of microplastics and associated chemicals in the terrestrial environment – Exposure of soil invertebrates to tire particles

    Get PDF
    Highlights • Negative impacts of tire particles on soil invertebrates are possible at roadsides. • Tire particles slightly decreased reproduction and survival of springtail F. candida. • Tire particles decreased AChE activity of isopod P. scaber. • No dose-dependent effects of tire particles on enchytraeid E. crypticus observed. • Tire particles contained a variety of potentially harmful substances.Abrasion of tire wear is one of the largest sources of microplastics to the environment. Although most tire particles settle into soils, studies on their ecotoxicological impacts on the terrestrial environment are scarce. Here, the effects of tire particles (<180 μm) on three ecologically relevant soil invertebrate species, the enchytraeid worm Enchytraeus crypticus, the springtail Folsomia candida and the woodlouse Porcellio scaber, were studied. These species were exposed to tire particles spiked in soil or in food at concentrations of 0.02%, 0.06%, 0.17%, 0.5% and 1.5% (w/w). Tire particles contained a variety of potentially harmful substances. Zinc (21 900 mg kg−1) was the dominant trace element, whilst the highest concentrations of the measured organic compounds were detected for benzothiazole (89.2 mg kg−1), pyrene (4.85 mg kg−1), chlorpyrifos (0.351 mg kg−1), HCB (0.134 mg kg−1), methoxychlor (0.116 mg kg−1) and BDE 28 (0.100 mg kg−1). At the highest test concentration in soil (1.5%), the tire particles decreased F. candida reproduction by 38% and survival by 24%, and acetylcholinesterase (AChE) activity of P. scaber by 65%, whilst the slight decrease in the reproduction of E. crypticus was not dose-dependent. In food, the highest test concentration of tire particles reduced F. candida survival by 38%. These results suggest that micro-sized tire particles can affect soil invertebrates at concentrations found at roadsides, whilst short-term impacts at concentrations found further from the roadsides are unlikely

    Muovien haitalliset ympäristö- ja terveysvaikutukset

    Get PDF
    Muoveja päätyy ympäristöön useista lähteistä. Etenkin kevyet muovit voivat kulkeutua kauas alkuperäisiltä päästölähteiltään. Muovit voivat kuljettaa mukanaan mm. vieraslajeja, taudinaiheuttajia sekä haitallisia yhdisteitä. Muoveja pääsee ympäristöön kaikista muovin elinkaaren vaiheista, mutta yksi merkittävimmistä päästölähteistä on elinkaaren loppupäässä muodostuvat roskat. Muovit ovat ympäristössä erittäin pysyviä. Suurikokoiset muovit voivat pilkkoutua edelleen pienemmiksi muodostaen mikromuoveja, jotka pienen kokonsa vuoksi kulkeutuvat helpommin eliöihin. Ympäristöön päädyttyään muovit voivat aiheuttaa monenlaisia vaikutuksia. Vesiympäristössä suurikokoisten muovien tunnetuimmat haitat ovat eliöiden takertuminen niihin sekä muovikappaleiden syömisestä aiheutuvat ongelmat. Maaekosysteemien osalta tietoa muovien vaikutuksista on varsin vähän. Nykytiedon valossa näyttäisi siltä, että vaikutukset ovat samansuuntaisia vesiympäristön kanssa. Mikromuovien on todettu puolestaan vaikuttavan haitallisesti useisiin eri ravintoverkon tasojen eliöihin. Vesiympäristössä monien eri lajien on havaittu altistuvan mikromuovihiukkasille. Eliöihin kulkeutuneet mikromuovit voivat aiheuttaa niissä hyvin monen tyyppisiä haittavaikutuksia. Maaympäristössä maaperäeläimet voivat myös toimia mikromuovien reittinä maanpäälliseen ravintoverkkoon. Ihmiset altistuvat mikromuoveille päivittäin ravinnon, sisä- ja ulkoilman sekä ihon kautta, mutta altistumisen määrää ja sen mahdollisia vaikutuksia terveyteen ei tarkkaan tunneta. Koe-eläimillä ja solumalleilla tehdyissä tutkimuksissa on saatu viitteitä haitallisista vaikutuksista, mutta näissä tutkimuksissa käytetyt suuret annosmäärät ja tasalaatuiset muovilajit eivät vastaa ihmisten tavanomaista altistumista. Vaikka näyttö terveysvaikutuksista on vähäistä, kansainväliset tiedejärjestöt ovat arvioineet, että mikromuovialtistus on tällä hetkellä niin pientä, että siitä ei aiheudu merkittävää riskiä ihmisten terveydelle. Tilanne voi kuitenkin muuttua ympäristön mikromuovisaastemäärän kasvaessa. Lisää tietoa tarvitaan erityisesti nanokokoisten muovihiukkasten käyttäytymisestä elimistössä, pienten lasten altistumisesta, mahdollisista suolistovaikutuksista sekä pitkäaikaisen elimistöön kertymisen seurauksista. Jätteen synnyn ehkäisy ja kiertotalouden optimointi on tärkeää muovien aiheuttamien ympäristövaikutusten pitämiseksi mahdollisimman pieninä. Vuonna 2018 laadittu Muovitiekartta on esittänyt useita toimenpide-ehdotuksia muovien käytön vähentämiseksi, korvaamiseksi sekä kierrätyksen tehostamiseksi. Ekologisesti kestävä ja turvallisuusnäkökulmat huomioiva tuotesuunnittelu on osaltaan avainasemassa muovien ilmasto- ja ympäristöpäästöjen vähentämisessä. Vaikka muoveja ja niiden vaikutuksiin kohdistuvaa sääntelyä on viime vuosina lisätty, on puutteita edelleen havaittavissa. Ensisijaisena hallintakeinona voidaan kuitenkin nähdä muovien ympäristöpäästöjen estäminen. Eräs keskeinen ongelma kuitenkin on, että suoria ohjauskeinoja sekundääristen mikromuovien syntymisen ehkäisemiseksi ei ole. Muovin ollessa edelleen keskeisessä roolissa useissa yhteiskunnan toiminnoissa, tarvitaan jatkossa edelleen monen tasoisia hallintakeinoja muovien aiheuttamien ympäristö- ja terveysvaikutusten vähentämiseksi.Adverse environmental and health effects of plastics Plastic enters the environment from various emission sources. In particular, light plastics may be transported long distances from their original emission sources. Plastics may also carry alien species, pathogens, and hazardous substances. Plastics are released into the environment from all stages of their life cycle, but one of the most significant sources is plastic waste generated at the end of the life cycle. In the environment plastics are extremely persistent. Large plastics items can be further broken down into smaller pieces which, due to their small size, are more easily transported into organisms. Once released into the environment, plastics may have a wide range of various impacts. In an aquatic environment, the most common disadvantages of large plastics are the tangling of organisms in them, and the problems caused by organisms eating plastic pieces. There is a lack of information on the impacts of plastics on terrestrial ecosystems. However, according to the information available the impacts on the terrestrial environment seem to be quite parallel to the aquatic environment. Microplastics have been found to have adverse impacts on several organisms at different trophic levels. In an aquatic environment various species have been found to be exposed to microplastic particles. Microplastics introduced into organisms can cause many types of unwanted side effects. In a terrestrial environment, soil animals can also act as a pathway for microplastics into the terrestrial food web. Humans are exposed to microplastics on a daily basis through food, indoor and outdoor air, and the skin, but the extent of the exposure and its potential effects on health are not well known. Laboratory studies in animals and cell models have shown evidence of adverse effects, but the high doses and uniform plastic types used in these studies do not correspond to normal human exposure. Even though the evidence for health effects is limited, international scientific community has estimated that microplastic exposure is currently so low that it does not pose a significant risk to human health. However, the situation may change as the amount of microplastic pollution in the environment keep increasing. More information is required, especially on the behavior of nanosized plastic particles in the human body, the exposure of young children to plastics, the possible intestinal effects and the consequences of long-term accumulation. Waste prevention and optimizing the circular economy are important ways to minimize the environmental impact of plastics. The Plastic Roadmap launched in 2018 has set several proposals for measures to reduce and replace plastic use and to increase the efficiency of recycling. Ecologically sustainable product design that also takes into account safety perspectives plays a key role in reducing climate and environmental emissions from plastics. Although the legislation and regulative measures of plastics and their impacts has increased in recent years, shortcomings still remain. The prevention of plastic emissions to the environment can be seen as a primary control measure. One key problem, however, is that there are no direct control methods to prevent secondary plastics emissions. As plastic keeps playing a key role in many activities in society, multi-level management measures are still required to reduce the environmental and health impacts of plastics

    Muovien haitalliset ympäristö- ja terveysvaikutukset

    Get PDF
    Muoveja päätyy ympäristöön useista lähteistä. Etenkin kevyet muovit voivat kulkeutua kauas alkuperäisiltä päästölähteiltään. Muovit voivat kuljettaa mukanaan mm. vieraslajeja, taudinaiheuttajia sekä haitallisia yhdisteitä. Muoveja pääsee ympäristöön kaikista muovin elinkaaren vaiheista, mutta yksi merkittävimmistä päästölähteistä on elinkaaren loppupäässä muodostuvat roskat. Muovit ovat ympäristössä erittäin pysyviä. Suurikokoiset muovit voivat pilkkoutua edelleen pienemmiksi muodostaen mikromuoveja, jotka pienen kokonsa vuoksi kulkeutuvat helpommin eliöihin. Ympäristöön päädyttyään muovit voivat aiheuttaa monenlaisia vaikutuksia. Vesiympäristössä suurikokoisten muovien tunnetuimmat haitat ovat eliöiden takertuminen niihin sekä muovikappaleiden syömisestä aiheutuvat ongelmat. Maaekosysteemien osalta tietoa muovien vaikutuksista on varsin vähän. Nykytiedon valossa näyttäisi siltä, että vaikutukset ovat samansuuntaisia vesiympäristön kanssa. Mikromuovien on todettu puolestaan vaikuttavan haitallisesti useisiin eri ravintoverkon tasojen eliöihin. Vesiympäristössä monien eri lajien on havaittu altistuvan mikromuovihiukkasille. Eliöihin kulkeutuneet mikromuovit voivat aiheuttaa niissä hyvin monen tyyppisiä haittavaikutuksia. Maaympäristössä maaperäeläimet voivat myös toimia mikromuovien reittinä maanpäälliseen ravintoverkkoon. Ihmiset altistuvat mikromuoveille päivittäin ravinnon, sisä- ja ulkoilman sekä ihon kautta, mutta altistumisen määrää ja sen mahdollisia vaikutuksia terveyteen ei tarkkaan tunneta. Koe-eläimillä ja solumalleilla tehdyissä tutkimuksissa on saatu viitteitä haitallisista vaikutuksista, mutta näissä tutkimuksissa käytetyt suuret annosmäärät ja tasalaatuiset muovilajit eivät vastaa ihmisten tavanomaista altistumista. Vaikka näyttö terveysvaikutuksista on vähäistä, kansainväliset tiedejärjestöt ovat arvioineet, että mikromuovialtistus on tällä hetkellä niin pientä, että siitä ei aiheudu merkittävää riskiä ihmisten terveydelle. Tilanne voi kuitenkin muuttua ympäristön mikromuovisaastemäärän kasvaessa. Lisää tietoa tarvitaan erityisesti nanokokoisten muovihiukkasten käyttäytymisestä elimistössä, pienten lasten altistumisesta, mahdollisista suolistovaikutuksista sekä pitkäaikaisen elimistöön kertymisen seurauksista. Jätteen synnyn ehkäisy ja kiertotalouden optimointi on tärkeää muovien aiheuttamien ympäristövaikutusten pitämiseksi mahdollisimman pieninä. Vuonna 2018 laadittu Muovitiekartta on esittänyt useita toimenpide-ehdotuksia muovien käytön vähentämiseksi, korvaamiseksi sekä kierrätyksen tehostamiseksi. Ekologisesti kestävä ja turvallisuusnäkökulmat huomioiva tuotesuunnittelu on osaltaan avainasemassa muovien ilmasto- ja ympäristöpäästöjen vähentämisessä. Vaikka muoveja ja niiden vaikutuksiin kohdistuvaa sääntelyä on viime vuosina lisätty, on puutteita edelleen havaittavissa. Ensisijaisena hallintakeinona voidaan kuitenkin nähdä muovien ympäristöpäästöjen estäminen. Eräs keskeinen ongelma kuitenkin on, että suoria ohjauskeinoja sekundääristen mikromuovien syntymisen ehkäisemiseksi ei ole. Muovin ollessa edelleen keskeisessä roolissa useissa yhteiskunnan toiminnoissa, tarvitaan jatkossa edelleen monen tasoisia hallintakeinoja muovien aiheuttamien ympäristö- ja terveysvaikutusten vähentämiseksi.Adverse environmental and health effects of plastics Plastic enters the environment from various emission sources. In particular, light plastics may be transported long distances from their original emission sources. Plastics may also carry alien species, pathogens, and hazardous substances. Plastics are released into the environment from all stages of their life cycle, but one of the most significant sources is plastic waste generated at the end of the life cycle. In the environment plastics are extremely persistent. Large plastics items can be further broken down into smaller pieces which, due to their small size, are more easily transported into organisms. Once released into the environment, plastics may have a wide range of various impacts. In an aquatic environment, the most common disadvantages of large plastics are the tangling of organisms in them, and the problems caused by organisms eating plastic pieces. There is a lack of information on the impacts of plastics on terrestrial ecosystems. However, according to the information available the impacts on the terrestrial environment seem to be quite parallel to the aquatic environment. Microplastics have been found to have adverse impacts on several organisms at different trophic levels. In an aquatic environment various species have been found to be exposed to microplastic particles. Microplastics introduced into organisms can cause many types of unwanted side effects. In a terrestrial environment, soil animals can also act as a pathway for microplastics into the terrestrial food web. Humans are exposed to microplastics on a daily basis through food, indoor and outdoor air, and the skin, but the extent of the exposure and its potential effects on health are not well known. Laboratory studies in animals and cell models have shown evidence of adverse effects, but the high doses and uniform plastic types used in these studies do not correspond to normal human exposure. Even though the evidence for health effects is limited, international scientific community has estimated that microplastic exposure is currently so low that it does not pose a significant risk to human health. However, the situation may change as the amount of microplastic pollution in the environment keep increasing. More information is required, especially on the behavior of nanosized plastic particles in the human body, the exposure of young children to plastics, the possible intestinal effects and the consequences of long-term accumulation. Waste prevention and optimizing the circular economy are important ways to minimize the environmental impact of plastics. The Plastic Roadmap launched in 2018 has set several proposals for measures to reduce and replace plastic use and to increase the efficiency of recycling. Ecologically sustainable product design that also takes into account safety perspectives plays a key role in reducing climate and environmental emissions from plastics. Although the legislation and regulative measures of plastics and their impacts has increased in recent years, shortcomings still remain. The prevention of plastic emissions to the environment can be seen as a primary control measure. One key problem, however, is that there are no direct control methods to prevent secondary plastics emissions. As plastic keeps playing a key role in many activities in society, multi-level management measures are still required to reduce the environmental and health impacts of plastics
    corecore