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• Immune parameters are slightly changed
upon exposure to plastic fibres or crumb
rubber.

• Chlorpyrifos caused significant changes
in Porcellio scaber immune parameters.

• Microplastics decreased the bioavail-
ability of chlorpyrifos for P. scaber.

• Mixtures of plastic fibres and chlor-
pyrifos resulted in greater response
in haemocyte count.
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Microplastics and agrochemicals are common pollutants in terrestrial ecosystems. Their interaction during coex-
istence in soils may influence their fate and adverse effects on terrestrial organisms. The aim of this study was to
investigate how the exposure to two types of microplastics; polyester fibres, and crumb rubber; induce changes
in immune parameters of Porcellio scaber and if the co-exposure of microplastics affects the response induced by
the organophosphate pesticide chlorpyrifos. A number of immune parameters, such as total haemocyte count,
differential haemocyte count, and phenoloxidase-like activitywere assessed. In addition, the acetylcholinesterase
(AChE) activity in the haemolymph was evaluated as a measure of the bioavailability of chlorpyrifos. After three
weeks of exposure, themost noticeable changes in themeasured immune parameters and also a significantly re-
duced AChE activity were seen in chlorpyrifos-exposed animals. Both types of microplastic at environmentally
relevant concentrations caused only slight changes in immune parameters which were not dependent on the
type of microplastic, although the two types differed significantly in terms of the chemical complexity of the ad-
ditives. Mixtures of chlorpyrifos and microplastics induced changes that differed from individual exposures. For
example, alterations in somemeasured parameters suggested a reduced bioavailability of chlorpyrifos (AChE ac-
tivity, haemocyte viability) caused by both types of microplastics exposure, but the increase of haemocyte count
was promoted by the presence of fibres implying their joint action. In conclusion, this study suggests that im-
mune processes in P. scaber are slightly changed upon exposure to both types of microplastics and microplastics
can significantly modulate the effects of other co-exposed chemicals. Further research is needed on the short-
term and long-term joint effects of microplastics and agrochemicals on the immunity of soil invertebrates.
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(http://creativecommons.org/licenses/by-nc-nd/4.0/).
alj).

.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2020.144900&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.scitotenv.2020.144900
mailto:anita.jemec@bf.uni-lj.si
https://doi.org/10.1016/j.scitotenv.2020.144900
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/scitotenv


A. Dolar, S. Selonen, C.A.M. van Gestel et al. Science of the Total Environment 772 (2021) 144900
1. Introduction

A number of studies over recent years have investigated the effects of
microplastics on terrestrial invertebrates (Huerta Lwanga et al., 2017,
2016; Ju et al., 2019; Jemec Kokalj et al., 2018; Rodríguez-Seijo et al.,
2017; Selonen et al., 2020; B.K. Zhu et al., 2018; Zhu et al., 2018). Most
of these were applied at the level of the whole organism, in terms of sur-
vival, reproduction and feeding activity, so less is known about other sub-
lethal effects after long-term exposure (Rodríguez-Seijo et al., 2017). One
of the likelymicroplastic-induced changes in organisms are those related
to immunity, as has been shown for aquatic organisms (Détrée and
Gallardo-Escárate, 2017; Gomiero et al., 2018; Green et al., 2019; Liu
et al., 2019; Mohsen et al., 2020; Revel et al., 2018; Von Moos et al.,
2012). The responses of the immune system are the first line of protec-
tion against exogenous and endogenous threats, such as pathogenic in-
fections, tissue damage or cancers, and thus the immune system offers
a wide range of sensitive measures for the physiological state and envi-
ronment of an organism (Boraschi et al., 2020; Canesi et al., 2015;
Matozzo andGagné, 2016). There are severalways inwhichmicroplastics
might provoke an immune response leading to either immunosuppres-
sion or immunostimulation. For example, an immune response might
arise through changes in the diversity and function of the intestinal mi-
croorganisms (Liu et al., 2019; Motta et al., 2018; Zhu et al., 2018), me-
chanical damage to the digestive tract (Davis and Engström, 2012; Lei
et al., 2018; Qi et al., 2017), or changes in food quality (Pascual et al.,
2004) and food intake (Matozzo et al., 2011). In addition to any effects
of microplastic particles, the chemicals released from microplastics that
are known as plastic additives (Hermabessiere et al., 2017) might them-
selves indirectly induce changes in the immune parameters (Sung et al.,
2011).

This study was focused on the terrestrial isopod woodlouse Porcellio
scaber (Crustacea: Isopoda), which is recognised as an important test
species in soil ecotoxicology (Van Gestel et al., 2018) due to its indis-
pensable ecosystem function in litter decomposition. Immune parame-
ters have not been measured previously in P. scaber in response to a
pollutant, but their modulation under infection has been investigated
(Dolar et al., 2020; Kostanjšek and PircMarolt, 2015). The innate immu-
nity of terrestrial isopods consists of humoral and cellular components,
primarily the haemocytes, that first recognise and then respond to chal-
lenges through the activation of phagocytosis, nodulation, encapsula-
tion, clotting and melanisation (Söderhäll, 2016). In P. scaber, three
types of haemocytes have been described at the light microscopy level
(Dolar et al., 2020). Semigranulocytes are responsible for encapsulation
(Kostanjšek and Pirc Marolt, 2015) and phagocytosis (Chevalier et al.,
2011), and they also synthesise and secrete the components of the
prophenoloxidase (proPO)-activating system (Cerenius et al., 2003).
Granulocytes are rich in cytoplasmic granules and are the main source
of humoral molecules, such as antimicrobial peptides and enzymes in-
volved in the proPO cascade (Havanapan et al., 2016; Qin et al., 2019).
The third cell type is the hyalinocyte, which is mainly responsible for
phagocytosis (Jia et al., 2017). The enzymephenoloxidase (PO) is an im-
portant humoral component that is involved inmany processes, such as
cuticle sclerotisation, wound healing and defence against parasites,
through induction of melanisation (Cerenius et al., 2008; Liu et al.,
2007). The measured parameters in the present study are among the
most commonly measured immune-related biomarkers in experimen-
tal studies with invertebrates: total haemocyte count (THC), differential
haemocyte count (DHC), haemocyte viability, and PO-like activity (Le
Moullac and Haffner, 2000; Matozzo et al., 2011; Revel et al., 2018).

There is substantial evidence that terrestrial ecosystems, especially
agricultural soils, are contaminated with microplastics of different poly-
mer compositions, shapes and sizes (Corradini et al., 2019; Nizzetto et al.,
2016; Zhu et al., 2019). The reported concentrations of microplastics in
agricultural soil range from 7100 to 42,940 particles kg−1 soil (Zhang
and Liu, 2018), to 1600 to 56,000 particles kg−1 in sewage sludge (Li
et al., 2018) and 0.03% to 6.7% soil weight in industrial areas (Fuller
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and Gautam, 2016). Among all of the microplastics found in the soils,
synthetic fibres represent themajor portion. For example, in agricultural
soils amended with sewage sludge or biosolids, synthetic fibres have
been reported to comprise 92% (Zhang and Liu, 2018), and even 97%
(Corradini et al., 2019), of themicroplastic particles present. The abrasion
of tyre wear is also considered to be responsible for one of the greatest
inputs of microplastics into the environment, in particular along the
sides of roads (Kole et al., 2017; Sieber et al., 2020; Wagner et al.,
2018). Tyre wear particles are not conventional thermoplastics, but are
elastomers like rubber, which is not covered by the original definition
of plastic. However, they have been considered as microplastics because
synthetic polymers are an essential ingredient of tyres (Hartmann et al.,
2019). Tyrewear particle concentrations of 0.2% to 12% (w/w) have been
measured or estimated along roads, while 30 m from roads, the concen-
trations fall to 0.005% to 0.01% (w/w) (Unice et al., 2012; Wagner et al.,
2018; Wik and Dave, 2009).

Apart from microplastics, agricultural soils are sinks for agrochemi-
cals, many of which are very stable, with half-lives that range from a
few months to several years, and in some cases even reach decades
(Pose-Juan et al., 2015; Yadav et al., 2015). The interactions between
microplastics and other pollutants during their co-existence influences
their fate and toxicity (Ramos et al., 2015; Tourinho et al., 2019; Wang
et al., 2018). Microplastics have been shown to act as carriers of hydro-
phobic substances due to their high hydrophobicity, small particle size
and large specific surface area (Bakir et al., 2012; Hüffer et al., 2018;
Teuten et al., 2009). Meso-particles and macro-particles made of low-
density polyethylene plastic films used in agriculture have been shown
to adsorb different types of pesticides (e.g., endosulfan, deltamethrin),
and in addition to surface adsorption, diffusion also takes place within
the plastic matrix (Ramos et al., 2015). The amounts of adsorbed pesti-
cides correlate with the octanol-water coefficient (Ramos et al., 2015).
Desorption of chlorpyrifos and trifluralin from plastic particles occurs
upon contact with soil, although their migration largely depends on
the type of pesticide formulation; this is higher for the chlorpyrifos reg-
istered product than for the analytical standard dissolved in an organic
solvent (Ramos et al., 2015; Rodríguez-Seijo et al., 2019).

A number of studies have investigated the effects ofmicroplastics pre-
incubatedwith contaminants prior to exposure (also referred to as loaded
microplastics) (Bellas and Gil, 2020; Besseling et al., 2019; Browne et al.,
2013; Garrido et al., 2019; Kleinteich et al., 2018; Rivera-Hernández
et al., 2019), while others have investigated the effects of simultaneous
co-exposure of microplastics and chemicals on freshwater (Felten et al.,
2020; Garrido et al., 2019; Horton et al., 2018; Kleinteich et al., 2018;
Rehse et al., 2018; Zhang et al., 2019; Zocchi and Sommaruga, 2019)
and marine organisms (Beiras and Tato, 2019; Bellas and Gil, 2020;
Magara et al., 2019). At present, however, there are only a few studies
that have investigated the effects of co-exposure of microplastics and
other pollutants on terrestrial organisms (Wang et al., 2019a; Zhou
et al., 2020).

In the present study, we exposed P. scaber to the pesticide chlorpyr-
ifos, microplastics, and their mixtures. Chlorpyrifos is an organophos-
phorus insecticide that has been widely used since 1960, and is now
frequently detected in water and food (Mahajan et al., 2019). The pri-
mary toxic mechanism of chlorpyrifos is based on its specific inhibition
of acetylcholinesterase (AChE), an enzyme that is predominantly in-
volved in neurotransmission, but that has many other physiological
functionsunrelated to the cholinergic system (Sepčić et al., 2019). Chlor-
pyrifos has already been investigated in mixtures with microplastics
(Bellas and Gil, 2020; Garrido et al., 2019; Rodríguez-Seijo et al., 2019),
which makes it a good model chemical for comparisons with other
types of microplastics and organisms. Numerous effects of chlorpyrifos
on selected terrestrial invertebrates have been reported (Gatti et al.,
2002; Jager et al., 2007; Pelosi et al., 2014; Zhou et al., 2007), which in-
clude changes in immune parameters (Banaee et al., 2019; Galloway
and Handy, 2003; Kankana Kalita and Devi, 2016). In earthworms, for
example, reduced haemocyte viability (Booth and O'Halloran, 2001;
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Eason et al., 1999) and phagocytic activity (Bunn et al., 1996) have been
reported for chlorpyrifos exposure. However, although there have been
some studies on the lethal effects of chlorpyrifos on terrestrial isopods
(Morgado et al., 2016; Nair et al., 2002), the only study available on
P. scaber provides little information on the sublethal effects of chlorpyr-
ifos (Nair et al., 2002).

The aim of this study was to investigate the following questions:
(i) Does a 3-week exposure of P. scaber to two types of microplastics
with different shapes, sizes, polymer compositions and chemical ad-
ditives (i.e., polyester fibres, crumb rubber) induce changes in their
immune parameters; and (ii) Does co-exposure of microplastics af-
fect the responses provoked by the organophosphate insecticide
chlorpyrifos. We hypothesised that the effects of chlorpyrifos and
microplastics mixtures will differ from their individual exposures,
either with increased effects due to the interactions of these two pol-
lutants, or with reduced effects due to decreased bioavailability of
chlorpyrifos. We expect that the changes in the immune parameters
will depend on the type of microplastic, due to the different physico-
chemical properties.

2. Materials and methods

2.1. Chemicals

The following chemicals were used: chlorpyrifos (98%; Cheminova
Ltd, Denmark; CAS No. 2921-88-2; C9H11Cl3NO3PS), BCA protein
assay reagents (Pierce, Rockford, ZDA), acetone, bovine serum albumin,
Dulbecco's phosphate-buffered saline (DPBS; pH 7.1–7.5), sodium bicar-
bonate (NaHCO3), potassium phosphate buffer (250 mM, pH 7.4;
100 mM, pH 7.0), Triton X-100, dopamine hydrochloride, sodium dode-
cyl sulphate, trypanblue, 5,5′-dithiobis-2-nitrobenzoic acid (for Ellman's
reagent) and acetylthiocholine chloride (all Sigma-Aldrich).

2.2. Microplastics

The polyester fibres used in this study were prepared by cutting a
fleece blanket followed by cryo-milling using a homogeniser (MillMix
20; Domel, Slovenia), as described by Selonen et al. (2020). The fibres
had the shapes of narrow strips with a mean sample length of 220 ±
200 μm, a length range of 12 μm to 2870 μm, and a thickness of 6 μm.

The crumb rubber (particle size, <180 μm) was produced by Genan
(Denmark) frommixed end-of-life car tyres by cryo-milling. The powder
contained several different synthetic rubbers, which included styrene-
butadiene rubber, butadiene rubber and butyl rubber, with 10% to 35%
natural rubbers, and 25% to 35% carbon black. Scanning electron micros-
copy showed that the crumb rubber particles were irregular fragments
(Supplementary information, Fig. S1). According to the particle size anal-
ysis, the dominant fraction of particles was from 80 μm to 110 μm (mean,
102.9 μm; volumetric distribution). A number of metal trace elements
were also measured in the crumb rubber. The largest proportions were
for Zn (22,700 μg g−1), Al (1300 μg g−1), Co (139 μg g−1) and Cu
(130 μg g−1). Eight different polycyclic aromatic hydrocarbons were de-
tected in the crumb rubber: benzo[ghi]perylene (0.492 μg g−1), fluorene
(0.189 μg g−1), benzo[a]pyrene (0.152 μg g−1), phenanthrene
(0.127 μg g−1), benzo[b+j]fluoranthenes (0.119 μg g−1), benzo[k]fluo-
ranthene (0.083 μg g−1), pyrene (0.048 μg g−1) and fluoranthene
(0.0135 μg g−1).

2.3. Test organisms

Porcellio scaber (woodlice) were collected from a compost heap
in a non-contaminated, pollution-free garden in Kamnik, Slovenia
(46° 13′ 32.988″ N; 14° 36′ 42.12″ E). Before the experiments, they
were synchronised for several months under constant temperature
(20 ± 2 °C) and illumination (16:8 h, light:dark) in a climate-
controlled chamber at the University of Ljubljana. They were caged
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in glass containers with a mixture of loamy sand and peat at the bot-
tom (at 40% water holding capacity), and fed on dry leaves from com-
mon hazel (Corylus avellana) and common alder (Alnus glutinosa), and on
carrots, as described by Jemec Kokalj et al. (2018). The soil and dry leaves
were dry sterilised at 105 °C for 3 h before the woodlice were introduced
into the glass containers. Only healthy, adult woodlice (30–60 mg fresh
body mass) of both sexes were used. Moulting woodlice, females with
marsupia, and those showing symptoms of bacterial or viral infection
were excluded.

2.4. Experimental design

Two experiments were carried out, onewith chlorpyrifos and fibres,
and the otherwith chlorpyrifos and crumb rubber. Each experiment had
three different treatments: chlorpyrifos alone, microplastics alone, and
chlorpyrifos + microplastics. The concentrations used for both of the
microplastics were 0.05%, 0.5% and 1.5% (w/w) in the microplastic
alone treatments, and 0.5% (w/w) in the chlorpyrifos + microplastics
treatments. The microplastics concentrations were chosen based on a
previous study (Selonen et al., 2020). The nominal concentrations of
chlorpyrifos were 0.2, 0.4, 0.6, 0.8 and 2.0 mg kg−1 dry soil in both the
chlorpyrifos alone and the chlorpyrifos + microplastics treatments.
These concentrations were based on a previous study that reported a
120-h median lethal concentration (LC50) for woodlice of 2.0 mg kg−1

(Nair et al., 2002). Chlorpyrifos concentrations in the test soil weremea-
sured at the beginning of the experiments for the two highest concen-
trations of chlorpyrifos; 0.8 and 2.0 mg kg−1. These samples were
analysed by a certified commercial analytical laboratory (Groen Agro
Control, The Netherlands), using liquid chromatography–tandem mass
spectrometry and chlorpyrifos-ethyl as the standard. The detection
limit was 0.01 mg kg−1 dry soil. As the measured concentrations did
not differ by more than 10% from the nominal values, the nominal
concentrations were used in all calculations. The following controls
were run: negative control without chlorpyrifos and without sol-
vent, solvent control #1 (acetone), and solvent control #2 (acetone,
0.5% microplastics).

Standard agricultural soil (Lufa 2.2; Lufa Speyer, Germany)was used
in all of the experiments. For the individual microplastics exposure, the
fibres and crumb rubber were first mixed with the dry soil, and prior to
exposure, the moisture content was adjusted to 40% of the water hold-
ing capacity, by addition of deionised water and mixing. Chlorpyrifos
was dissolved in 30 mL acetone (measured stock concentration, 65 ±
5 g L−1) and added to the soil. The acetone was left to evaporate off
overnight in a fume hood. The solvent control was prepared by adding
the same amount of acetone as in the chlorpyrifos treatments, to
reach the final concentration of 7.5% acetone (v/w). The solvent control
was also left for the acetone to evaporate off overnight. For the chlorpyr-
ifos + microplastics co-exposures, the microplastics were added the
next day, and the moisture content was adjusted to 40% water holding
capacity. After a day of stabilisation of the soil with these additions,
the soil was placed into the test jars, as 20 g to 30 g moist soil into
each 100-mL jar, and the woodlice were then introduced into the pre-
pared jars. Five replicate jars were prepared for each treatment, as
each chlorpyrifos concentration (without or with microplastics), and
the negative and solvent controls. Five woodlice were placed into each
replicate jar and some dry leaves of common hazel were added for
food. Altogether, 625 woodlice were used for this study, including the
controls and the individual and mixture conditions (Supplementary In-
formation, Fig. S2).

The soil moisture content was checked every 3 days, and the com-
mon hazel leaves were replaced each week. The pH of the soil was
from 5.2 to 5.6 for chlorpyrifos + polyester fibres, and 6.0 to 6.3 for
chlorpyrifos + crumb rubber, across all of the chlorpyrifos concentra-
tions tested. Thus, the pH did not differ according to the chlorpyrifos
concentration, which is line with our previous study on individual
chlorpyrifos exposure (Broerse and Van Gestel, 2010).
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2.5. Sampling of haemolymph

After 3 weeks of exposure of the woodlice in the jars, their
haemolymph was collected using a glass micropipette. The interseg-
mental membrane between the 5th and 6th dorsal segment was punc-
tured with a sterile syringe, and the woodlouse was gently squeezed.
Haemolymph from a single woodlouse or pooled from several woodlice
(depending on the volume collected from each woodlouse) was diluted
with DPBS (pH 7.1–7.5; see details below). The cellular immune param-
eters (i.e., THC, DHC, haemocyte viability) were assessed immediately
after collection of the haemolymph. For PO-like and AChE activities,
the haemolymph was stored for up to 2 weeks at −20 °C.

2.6. Analysis of immune markers

The THC, DHC and haemocytes viability were determined in dupli-
cate for each haemolymph sample obtained from a single woodlouse
or pooled from a maximum of three woodlice (immediately after
haemolymph collection) according to Dolar et al. (2020). The total num-
ber of samples analysed per controls and treatments was 8–12. Five μL
haemolymph was diluted 1:5 with DPBS (pH 7.1–7.5) with 0.4% trypan
blue, which stained dead haemocytes, while viable haemocytes remained
unstained. Ten μL of this 30-μL haemocyte suspensionwas pipetted into a
haemocytometer (Neubauer) to determine the THC, DHC and haemocyte
viability under light microscope (Axio Imager Z1; Zeiss). DHC was ob-
tained using differential interference contrast microscopy, by counting
the numbers of the different types of haemocytes: (1) small hyalinocytes
without cytoplasmic granules; (2) larger semigranulocyteswith lowden-
sity of cytoplasmic granules; and (3) granulocyteswithhighdensity of cy-
toplasmic granules (Dolar et al., 2020).

The PO-like activity included both the plasma PO andhaemocyanine-
derived PO activities, as measured in triplicate in the haemolymph sam-
ples collected from individual woodlice. The total number of samples
analysed per controls and treatments was 10–13. Due to the large
volume of haemolymph needed and the lack of woodlice left for this
analysis, PO-like activity was only measured under certain treatment
conditions: chlorpyrifos alone (all concentrations except the highest, of
2.0 mg kg−1), and 0.5% (w/w) fibre alone, and 0.05% and 1.5% (w/w)
crumb rubber alone; this assaywas not carried out for themixture treat-
ments. The PO-like activity was determined photometrically (Dolar
et al., 2020). Freshly collected haemolymph (3 μL) was diluted 1:39
with a solution containing DPBS (pH 7.1–7.5), 8 mM dopamine hydro-
chloride, and 2 mM sodium dodecyl sulphate, for in vitro PO activation.
Forty μL of this 120-μL reaction mixture was transferred to a 384-well
plate. The formation of reddish-brown pigment was measured
using an imaging reader (Cytation 3; Biotek, USA), at 475 nm and
25 °C, over at least 3 h. The PO-like activity in the haemolymph was
calculated as the change in absorbance from the linear part of the ab-
sorbance slope per min per μL haemolymph, as described by Charles
and Killian (2015), then normalised to the control, and expressed as
percentages.

2.7. Analysis of acetylcholinesterase activity in haemolymph

Acetylcholinesterase (AChE) activity was measured in duplicate in
the haemolymph samples collected from an individual woodlouse. The
total number of samples analysed per controls and treatments was
8–14. Due to the limited amount of haemolymph sample (as it was
also used for the other immune parameters), AChE activity could not
be measured for all of the chlorpyrifos concentrations and for the chlor-
pyrifos + crumb rubber co-exposure. AChE activity was determined ac-
cording to Ellman et al. (1961), using microtitre plates, and as described
by Madžarić et al. (2018). Ellman's reagent was prepared by dissolving
91 mg 5,5′-dithiobis-2-nitrobenzoic acid in 100 mL 250 mM potassium
phosphate buffer (pH 7.4), with addition of 37.5 mg NaHCO3. The solu-
tion was diluted to 1 L with deionised H2O and stored in a dark glass
4

bottle at 4 °C. Prior to measurement, the collected haemolymph (3 μL)
was diluted 1:20 with 100 mM potassium phosphate buffer (pH 7.0),
vortexed, and centrifuged at 16,000 ×g for 15 min at 4 °C. The reaction
mixture in each well of the 384-well microtitre plates included: 20 μL
sample, 15 μL Ellman's reagent and 5 μL acetylthiocholine chloride
with a final concentration of 1 mM. The reactions were followed photo-
metrically using an imaging reader (Cytation 3; Biotek, USA) at 405 nm
for 15 min at 25 °C. The specific AChE activity was calculated as nmol
hydrolysed acetylthiocholine chloride min−1 mg−1 protein (ε405 =
13,600 M−1 cm−1).

Protein concentrations in the haemolymph were determined using
BCA protein assay kits (Pierce, Rockford, IL, USA). After 30 min of incu-
bation at 37 °C, the absorbance was measured at 562 nm. The protein
concentrations in the sampleswere calculated from the standard curves
with bovine serum albumin (25–2000 μM).

2.8. Data analysis and reporting

Total haemocyte counts and PO-like activity are expressed as theper-
centage changes from the control group, while DHC is expressed as the
proportions (%) of each of the three haemocyte types in the THC.
Haemocyte viability is presented as the proportions (%) of viable
haemocytes within the THC. The data were analysed using the OriginPro
v2020 software (OriginLab, Northampton,Massachusetts, USA). For nor-
mal distributions and homoscedasticity of the data, one-way ANOVA
was performed followed by Tukey tests; otherwise, non-parametric
Kruskal-Wallis tests were used, followed by Mann-Whitney U tests
(Supplementary information, Tables S1–S5). p < 0.05 was considered
as significantly different. Within each treatment (chlorpyrifos alone,
chlorpyrifos mixtures with fibres/crumb rubber), the data were com-
pared to the respective controls. Chlorpyrifos treatments without and
with fibres or crumb rubber were compared at the effects of the same
chlorpyrifos concentration. Outliers were defined as those with 1.5-
fold difference between the first and third quartiles, and were excluded
from the analysis.

3. Results

3.1. Immune parameters

3.1.1. Individual microplastics exposure
Exposure of the woodlice to polyester fibres or crumb rubber for

3 weeks altered the profiles of the immune parameters. At 0.05%,
0.5% and 1.5% polyester fibres and crumb rubber, THC increased by
38%, 60% and 40%, and by 61%, 36% and 21%, respectively. With the
low sample numbers, when compared to the relevant control, these
differences were statistically significant only for 0.05% crumb rubber
(Fig. 1A). No clear dose-related responses were seen between THC and
themicroplastic concentrations. The DHCpattern, which includes infor-
mation on granulocytes, semigranulocytes and hyalinocytes, was very
similar to the respective controls for the microplastic exposure. No sta-
tistically significant changes in the viabilities of the haemocytes were
seen (Fig. 2). The PO-like activity was significantly increased only at
0.5% polyester fibres in the soil, and was not affected by any of the
crumb rubber concentrations tested (Fig. 3A).

3.1.2. Individual chlorpyrifos exposure
Total haemocyte counts, DHC, haemocyte viability and PO-like activ-

ity were all significantly affected after 3weeks exposure to chlorpyrifos.
The increase in THC reached 89% at the highest chlorpyrifos concentra-
tion of 2.0 mg kg−1 dry soil (Fig. 1B). At this concentration, the
haemocyte viability was decreased by 17% (Fig. 4D), while the PO-like
activity was significantly increased only at 0.6 mg kg−1 chlorpyrifos
(Fig. 3B). The most evident changes were for DHC, with an increasing
trend in granulocyte counts and decreasing semigranulocyte and
hyalinocyte numbers (Fig. 4A–C). None of the measured immune



Fig. 1. Total haemocyte count (THC) in the woodlice (Porcellio scaber) following 3 weeks exposure to the microplastics alone (A), and to chlorpyrifos alone and plus microplastics, as
polyester fibres and crumb rubber (B). Controls (shown at 0.0 chlorpyrifos): negative control (no solvent, no microplastics; empty black star); solvent control (no microplastics; empty
black square), plus solvent and fibres (no chlorpyrifos; empty blue triangle); and plus solvent and crumb rubber (no chlorpyrifos; empty green circle). Data are means ±SE (n =
8–12). *, p < 0.05, versus relevant control.
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parameters were affected in the solvent control (acetone) compared to
the negative controls.

3.1.3. Chlorpyrifos and microplastics co-exposure
The woodlice exposed to chlorpyrifos + crumb rubber showed sim-

ilar concentration-related trends of THC increase as for thewoodlice ex-
posed to chlorpyrifos alone (Fig. 1B), but different DHC profiles. This
was seen as more pronounced increases in granulocytes and decreases
in semigranulocytes at some chlorpyrifos concentrations in the chlor-
pyrifos + crumb rubber mixtures. Statistically significant differences
between chlorpyrifos alone and chlorpyrifos + crumb rubber were
Fig. 2. Proportions of different cell types within the total haemocytes populations, as hyalin
(Porcellio scaber) following 3 weeks exposure to the microplastics alone, as polyester fibres an

5

seen at 0.4 mg chlorpyrifos kg−1 dry soil for granulocytes, and 0.2 mg
and 0.6 mg chlorpyrifos kg−1 dry soil for semigranulocytes (Fig. 4A–
B). Joint exposure to chlorpyrifos + polyester fibres resulted in higher
THC (at 0.8 and 2.0 mg kg−1 chlorpyrifos) than for chlorpyrifos alone,
but these differences did not reach statistical significance due to the
high variability of the data (Fig. 1B). The DHC profiles were similar for
chlorpyrifos alone and chlorpyrifos + fibres, with statistically signifi-
cant differences between these only at 0.8 mg chlorpyrifos kg−1 dry
soil for hyalinocytes (Fig. 4C). The viability of the haemocytes was af-
fected only at the highest concentration of chlorpyrifos, but not when
polyester fibres or crumb rubber were included (Fig. 4D).
ocytes, granulocytes and semigranulocytes, and viability of haemocytes in the woodlice
d crumb rubber. Data are means ±SE (n = 8–12).



Fig. 3. Phenoloxidase (PO)-like activity in the woodlice (Porcellio scaber) following 3 weeks exposure to the microplastics alone (A), and to chlorpyrifos alone (B). Data are means ±SE
(n = 10–13). *, p < 0.05, versus relevant control.
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3.2. Acetylcholinesterase activity

Acetylcholinesterase (AChE) activity in the haemolymphwas sig-
nificantly decreased by about 60% (±4.8% SE) upon exposure to
0.8 mg chlorpyrifos kg−1. Following the chlorpyrifos + polyester fi-
bres co-exposure, inhibition of the AChE activity showed a similar
trend, but was less pronounced, at 43% (±8.5% SE) at the same con-
centration of chlorpyrifos. However, this difference between the two
treatments at 0.8 mg chlorpyrifos kg−1 was not statistically signifi-
cant (Fig. 5).
Fig. 4. Differential haemocyte counts for the granulocytes (A), semigranulocytes (B) and hyal
3 weeks exposure to chlorpyrifos alone and plus microplastics, as polyester fibres and crum
versus relevant control. Statistically significant differences between treatments at individual ch
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4. Discussion

This study investigated the immunomodulatory changes in P. scaber
following 3-week exposure to chlorpyrifos alone and in mixtures with
microplastics, as polyester fibres and crumb rubber. This resulted in sig-
nificant changes following chlorpyrifos alone, but only small changes in
the immune parameters for microplastics alone. Mixtures of chlorpyri-
fos andmicroplastics induced different changes for someof the immune
parameters compared to the individual exposures.While a lower reduc-
tion in haemocyte viability and AChE activity at the highest chlorpyrifos
inocytes (C), and viability of haemocytes (D) in the woodlice (Porcellio scaber) following
b rubber. For controls, see legend to Fig. 1. Data are means ±SE (n = 8–12). *, p < 0.05,
lorpyrifos concentrations (not shown) are described in the main text.



Fig. 5. Acetylcholinesterase (AChE) activity in the haemolymph in the woodlice (Porcellio
scaber) following 3 weeks exposure to chlorpyrifos alone and plus microplastics, as
polyester fibres. Data are means ±SE (n = 8–14). *, p < 0.05, versus relevant control.
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concentration implied decreased chlorpyrifos bioavailability in the
presence of the microplastics, enhanced changes in haemocyte counts
were observed for the chlorpyrifos and fibres mixtures (Table 1).

Exposure to chlorpyrifos led to obvious changes in the immune pa-
rameters of P. scaber. A significant increase in THC was observed at the
highest concentration of chlorpyrifos (2.0 mg kg−1). Some studies
have suggested that THC increases represent a feedback loop to replace
non-viable haemocytes (Fatima et al., 2014). However, the haemocyte
count is a frequently influenced parameter due to the altered physiolog-
ical state of an organism, for example during moulting or due to
environmental challenges, such as starvation (Matozzo et al., 2011),
temperature stress (Hernroth et al., 2012) and even the composition
of the diet (Pascual et al., 2004). A similar THC increase has been docu-
mented upon chlorpyrifos injection in the moth Spodoptera litura (Irfan
et al., 2019), as well as for other invertebrates following exposure to
pesticides (George and Ambrose, 2004). The significant decrease in
haemocyte viability in P. scaber at the highest concentration of chlorpyr-
ifos, however, can be considered as a direct adverse effect of the insecti-
cide on haemocytes, which is a commonly observed phenomenon in
crustaceans (Jose et al., 2011). One of the possible modes of action of
Table 1
Summary of woodlice (Porcellio scaber) responses upon exposure to chlorpyrifos alone
and in combination with the microplastics, as polyester fibres and crumb rubber. Overall
trends are shown, although some did not reach statistical significance under all exposure
concentrations (see main text).

7

chlorpyrifos is the induction of oxidative stress and subsequent cell ap-
optosis, which has been demonstrated both in vitro with cell lines (Ki
et al., 2013) and in vivo for mussel haemocytes (Patetsini et al., 2013).

Themost significant changes in P. scaber exposed to chlorpyrifos were
seen for the differential haemocyte counts, with an apparent dose-
dependent increase in granulocytes and decrease in semigranulocytes.
Such opposite trends in granulocyte and semigranulocyte counts are fre-
quently observed, as granulocytes and semigranulocytes appear to repre-
sent two consecutive phases of haemocyte maturation (Rebelo et al.,
2013). For this chlorpyrifos exposure, a shift in metabolic processes
might lead to the formation of granules, and thus to an increase in the
granulocytes (George and Ambrose, 2004). A similar increase in
granulocytes was reported for silkworm larvae (Philosamia ricini) when
they were fed on chlorpyrifos-contaminated food for 96 h (i.e., sprayed
with 1.5 and 2.0 mg L−1 chlorpyrifos) (Kankana Kalita and Devi, 2016).
Along with other cell types, granulocytes secrete components of the
proPO-activating system (Qin et al., 2019). Here, we observed an increase
in PO-like activity up to 0.8 mg chlorpyrifos kg−1, which follows the in-
creased THC and granulocytes. A positive correlation between THC (and
granulocytes) and PO-like activity was previously reported for bacterial
and viral infections in crustaceans (Dash et al., 2015; Dolar et al., 2020).
Similarly, Arambourou and Stoks (2015) reported increased body PO-
like activity in Ischnura elegans damselfly larvae after acute chlorpyrifos
exposure. In contrast, some other studies have reported decreases in
PO-like haemolymph activity after short-term exposure to chlorpyrifos
and glyphosate, with an additional reduction in THC (Banaee et al.,
2019; Kankana Kalita and Devi, 2016). PO is involved in many processes,
which include cuticle sclerotisation, wound healing, defence against
parasites via melanisation, and production of components with anti-
microbial, cytotoxic, opsonic, and encapsulation-promoting activities
(Cerenius and Söderhäll, 2004). Due to the complex role of this en-
zyme, it remains difficult to explain the biological consequences of
increased PO activity in an organism, although it might be an indica-
tion of immunostimulation.

The bioavailability of chlorpyrifos for P. scaber was indirectly
assessed by measuring the AChE activity in the haemolymph,
which is a known specific target for organophosphates like chlorpyr-
ifos (Banaee et al., 2019; Muangphra et al., 2016; Rodríguez-Seijo
et al., 2019). Here, this AChE activity was significantly and dose-
relatedly decreased by chlorpyrifos. Inhibition of haemolymph
AChE activity is an indirect indication that the haemocytes were ex-
posed to chlorpyrifos and therefore their viability might be directly
compromised, as discussed above. Currently, the physiological role
of the haemolymph AChE activity is still unclear (Glavan et al.,
2018; Moreira et al., 2001). However, a link to immune processes is
possible, as it has been shown that acetylcholine, which is the sub-
strate of AChE, is involved in immune response (Rajendran et al.,
2015; Shi et al., 2014). Wu et al. (2019) measured cholinesterase ac-
tivity in granulocytes of two Asian horseshoe crab species, and they
proposed that this activity is a haemocyte immune parameter. In ad-
dition, Wang et al. (2019b) showed up-regulation of genes that en-
code three AChE subunits in haemocytes in the shrimp Litopenaeus
vannamei when infected with white spot syndrome virus. However,
the association between AChE inhibition and other immune-related
changes in P. scaber remains to be investigated.

The immune parameters in P. scaber exposed to both types of
microplastics only showed slight changes compared to the controls.
PO-like activity was increased in response to polyester fibre expo-
sure, but not to crumb rubber. Similarly, Liu et al. (2019) reported in-
creases in PO-like activity in the crab Eriocheir sinensiswhen exposed
to polystyrene microspheres for 7 days, while a decrease was shown
after the longer exposures for 14 days and 21 days. PO-like activity
and haemocyte viability were also reduced in the marine worm
Hediste diversicolor when exposed to a mixture of polyethylene and
polypropylene microplastics for 10 days (Revel et al., 2018). We ob-
served a significant increase in THC in P. scaber only at 0.05% (w/w)
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crumb rubber, but not for fibres or the other exposures. THC did not
follow a dose-related trend here, which means that even low con-
centrations of microplastics (e.g., 0.05% w/w) are sufficient to induce
immune-related changes. Microplastics might provoke changes in
immune parameters through a release of additives (Capolupo et al.,
2020) that can cross the gut barrier and directly act on immune
cells, like chlorpyrifos, and/or they might have effects through phys-
ical interactions of the microplastics with the gut. As shown by the
chemical analysis, crumb rubber is a very complex material that is
also rich in organic and inorganic additives that might be released
into the soil and result in changes to immune processes. However,
if this was the case, a dose-related change in these immune parame-
ters should have been observed, as the concentrations of plastic-
associated chemicals released into the soil would differ significantly
between the lowest (0.05%) and highest (1.5%) microplastic concen-
trations used here. It is therefore more likely that the observed
changes in immune parameters upon exposure to the microplastics
were predominately due to alterations to the microenvironment of
the gut; e.g., due to changes in gut chemistry and microbiome (Van
der Zande et al., 2020), responses to the changed diet (Pascual
et al., 2004), or an immune response to damage of the gut cuticle
(Davis and Engström, 2012; Lei et al., 2018).

When woodlice were exposed to a mixture of chlorpyrifos and
microplastics, the changes in immune parameters differed from the
individual exposures (Table 1). The THC increase was greater for
combined chlorpyrifos + polyester fibres than for chlorpyrifos or
the fibres alone. On the other hand, the reduced inhibition of
haemolymph AChE activity and the lower effects on haemocyte via-
bility following chlorpyrifos + fibres compared to chlorpyrifos alone
indicate that the fibres reduced the bioavailability of chlorpyrifos.
The same conclusion can be drawn for the chlorpyrifos + crumb rub-
ber co-exposure, where there were no effects on the viability of
haemocytes, which was evident for chlorpyrifos alone. Unfortu-
nately, AChE activity could not be measured in the crumb rubber
co-exposure, which might have provided further evidence of re-
duced bioavailability. Interestingly, the chlorpyrifos + crumb rubber
co-exposure resulted in significantly different DHC profiles com-
pared to chlorpyrifos alone, with significantly greater increases in
granulocytes and decreases in semigranulocytes at some of the
chlorpyrifos concentrations. Both types of microplastics thus de-
creased the bioavailability of chlorpyrifos, while some of the param-
eters examined showed joint additive actions. Although polyester
fibres and crumb rubber differ in their physicochemical properties,
which might affect their pollutant adsorption potential (Bakir et al.,
2014; Tourinho et al., 2019), we did not detect any significant differ-
ences for the effects of these two microplastics on the chlorpyrifos
toxicity.

Studies onmicroplastic–chemicalmixtures have reported a variety of
outcomes in comparison to individual pollutant exposure. Compared to
individual pollutant exposures, the effects of mixtures can be enhanced
(Bellas and Gil, 2020; Felten et al., 2020; Zhang et al., 2019; Zhou et al.,
2020; Zocchi and Sommaruga, 2019), reduced (Rehse et al., 2018;
Wang et al., 2019a) or the same (Beiras et al., 2019; Beiras and Tato,
2019; Horton et al., 2018; Magara et al., 2019). As can be seen from
these studies, the results of co-exposure are not dependent on the poly-
mer type, pollutant (e.g., metal vs. organic pollutant) or exposure route
(aquatic vs. terrestrial). Also, contrasting results have been reported for
chlorpyrifos mixtures with microplastics. Simultaneous exposure for
48 h to a mixture of chlorpyrifos + polyethylene microplastics and
chlorpyrifos-loaded microplastics (i.e., chlorpyrifos pre-incubated with
the microplastics) had greater effects on survival, egg production and
feeding activity of the copepod Acartia tonsa than chlorpyrifos alone
(Bellas and Gil, 2020). However, the opposite was reported for marine
algae, which were significantly less affected when exposed to
chlorpyrifos-loaded microplastics than to chlorpyrifos alone; in this
latter case, reduced bioavailability was suggested to be the main
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reason (Garrido et al., 2019). In the present study, microplastics co-
exposure appears to have reduced chlorpyrifos bioavailability, but
also increased the responses provoked by chlorpyrifos.

The choice of test parameters might also partly explain the variety of
responses observed upon individual pollutant exposure in comparison
to their mixtures with microplastics. For example, inhibition of AChE ac-
tivity is a very specificmarker of organophosphate exposure, and a reduc-
tion in its inhibition is direct proof of reduced chlorpyrifos bioavailability.
Also, haemocyte viability is a very sensitive marker here, as chlorpyrifos
acts directly upon haemocytes. On the other hand, haemocyte counts
(as THC or DHC) represent more general, and less specific, markers as
these can reflect many different physiological alterations (Hernroth
et al., 2012; Pascual et al., 2004; Sequeira et al., 1995), including for the
joint actions of chlorpyrifos and microplastics, as shown by the present
study. It appears that the final conclusions on how microplastics might
modulate the changes in these immune parameters provoked by chlor-
pyrifos depends on the specificity and sensitivity of the parameter tested,
which was also previously suggested by Cedergreen and Streibig (2005).

In conclusion, we have provided evidence here that the immune
processes of P. scaber are only slightly altered after 3 weeks of exposure
to environmentally relevant concentrations of polyester fibres and
crumb rubber. These microplastics modulate the effects of chlorpyrifos
exposure on the immune processes examined in P. scaber, although
the results here appear not to be internally consistent at times: while
some of the parameters indicated that microplastics reduce the bio-
availability of chlorpyrifos, the responses of some other parameters
were enhanced in the presence of these microplastics. This study thus
indicates the need for further research into the short-term and long-
termeffects ofmicroplastics and chemicalmixtures on the immunepro-
cesses of soil invertebrates.
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