334 research outputs found

    Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial.

    Get PDF
    BACKGROUND: In this study, we aimed to evaluate the effects of tocilizumab in adult patients admitted to hospital with COVID-19 with both hypoxia and systemic inflammation. METHODS: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. Those trial participants with hypoxia (oxygen saturation <92% on air or requiring oxygen therapy) and evidence of systemic inflammation (C-reactive protein ≥75 mg/L) were eligible for random assignment in a 1:1 ratio to usual standard of care alone versus usual standard of care plus tocilizumab at a dose of 400 mg-800 mg (depending on weight) given intravenously. A second dose could be given 12-24 h later if the patient's condition had not improved. The primary outcome was 28-day mortality, assessed in the intention-to-treat population. The trial is registered with ISRCTN (50189673) and ClinicalTrials.gov (NCT04381936). FINDINGS: Between April 23, 2020, and Jan 24, 2021, 4116 adults of 21 550 patients enrolled into the RECOVERY trial were included in the assessment of tocilizumab, including 3385 (82%) patients receiving systemic corticosteroids. Overall, 621 (31%) of the 2022 patients allocated tocilizumab and 729 (35%) of the 2094 patients allocated to usual care died within 28 days (rate ratio 0·85; 95% CI 0·76-0·94; p=0·0028). Consistent results were seen in all prespecified subgroups of patients, including those receiving systemic corticosteroids. Patients allocated to tocilizumab were more likely to be discharged from hospital within 28 days (57% vs 50%; rate ratio 1·22; 1·12-1·33; p<0·0001). Among those not receiving invasive mechanical ventilation at baseline, patients allocated tocilizumab were less likely to reach the composite endpoint of invasive mechanical ventilation or death (35% vs 42%; risk ratio 0·84; 95% CI 0·77-0·92; p<0·0001). INTERPRETATION: In hospitalised COVID-19 patients with hypoxia and systemic inflammation, tocilizumab improved survival and other clinical outcomes. These benefits were seen regardless of the amount of respiratory support and were additional to the benefits of systemic corticosteroids. FUNDING: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    Relationship of an hRAD54 gene polymorphism (2290 C/T) in an Ecuadorian population with chronic myelogenous leukemia

    Get PDF
    The hRAD54 gene is a key member of the RAD52 epistasis group involved in repair of double-strand breaks (DSB) by homologous recombination (HR). Thus, alterations of the normal function of these genes could generate genetic instability, shifting the normal process of the cell cycle, leading the cells to develop into cancer. In this work we analyzed exon 18 of the hRAD54 gene, which has been previously reported by our group to carry a silent polymorphism, 2290 C/T (Ala730Ala), associated to meningiomas. We performed a PCR-SSCP method to detect the polymorphism in 239 samples including leukemia and normal control population. The results revealed that the 2290 C/T polymorphism has frequencies of 0.1 for the leukemia and 0.1 for the control group. These frequencies show no statistical differences. Additionally, we dissected the leukemia group in chronic myelogenous leukemia (CML) and acute lymphoblastic leukemia (ALL) to evaluate the polymorphism. The frequencies found in these subgroups were 0.14 for CML and 0.05 for ALL. We found statistically significant differences between CML patients and the control group (p < 0.05) but we did not find significant differences between ALL and the control group (p > 0.05). These results suggest a possible link between the 2290 C/T polymorphism of the hRAD54 gene and CML

    Polymorphisms in the cytochrome P450 genes CYP1A2, CYP1B1, CYP3A4, CYP3A5, CYP11A1, CYP17A1, CYP19A1 and colorectal cancer risk

    Get PDF
    BACKGROUND: Cytochrome P450 (CYP) enzymes have the potential to affect colorectal cancer (CRC) risk by determining the genotoxic impact of exogenous carcinogens and levels of sex hormones. METHODS: To investigate if common variants of CYP1A2, CYP1B1, CYP3A4, CYP3A5, CYP11A1, CYP17A1 and CYP19A1 influence CRC risk we genotyped 2,575 CRC cases and 2,707 controls for 20 single nucleotide polymorphisms (SNPs) that have not previously been shown to have functional consequence within these genes. RESULTS: There was a suggestion of increased risk, albeit insignificant after correction for multiple testing, of CRC for individuals homozygous for CYP1B1 rs162558 and heterozygous for CYP1A2 rs2069522 (odds ratio [OR] = 1.36, 95% confidence interval [CI]: 1.03-1.80 and OR = 1.34, 95% CI: 1.00-1.79 respectively). CONCLUSION: This study provides some support for polymorphic variation in CYP1A2 and CYP1B1 playing a role in CRC susceptibility

    Studies on CuCe0.75Zr0.25Ox preparation using bacterial cellulose and its application in toluene complete oxidation

    Get PDF
    A series of CuCe0.75Zr0.25Ox catalysts (CCZ) were synthesized based on the environmental‐friendly bacterial cellulose (BC) by using the sol‐gel method. The corresponding synthesis mechanism, physicochemical properties of the catalysts and catalytic performances for toluene oxidation were comprehensively studied. In the presence of BC without sugar, the CCZ−A synthesized by ethanol‐gel exhibits better catalytic activity than the CCZ−W synthesized by water‐gel, which may be due to the different roles of BC in different solvents. However, it is worth noting that the graft copolymerization between BC and active metal (Ce4+, Cu2+) is the same process in both water‐gel and ethanol‐gel. The activity of CCZ‐SW synthesized by water‐gel using BC with sugar is obviously higher than that of CCZ−W and CCZ−A. The temperature of complete degradation of toluene over CCZ‐SW is 205 °C, which is 35 °C lower than that of CCZ−W. The results from BET, Raman and H2‐TPR indicate that the larger the specific surface area, the more oxygen vacancies and better low‐temperature reducibility, that are mainly responsible for the excellent activity of CCZ‐SW. The existence of sugar in BC could hinder the agglomeration of active metal particles during the calcination process. Combined with the results of in situ DRIFT, the adsorbed toluene on the catalyst surface is oxidized into alkoxide, aldehydic and carboxylic acid species as intermediates before the complete oxidation into CO2 and H2O.

    Quantifying Microstructural Evolution in Moving Magma

    Get PDF
    Many of the grand challenges in volcanic and magmatic research are focused on understanding the dynamics of highly heterogeneous systems and the critical conditions that enable magmas to move or eruptions to initiate. From the formation and development of magma reservoirs, through propagation and arrest of magma, to the conditions in the conduit, gas escape, eruption dynamics, and beyond into the environmental impacts of that eruption, we are trying to define how processes occur, their rates and timings, and their causes and consequences. However, we are usually unable to observe the processes directly. Here we give a short synopsis of the new capabilities and highlight the potential insights that in situ observation can provide. We present the XRheo and Pele furnace experimental apparatus and analytical toolkit for the in situ X-ray tomography-based quantification of magmatic microstructural evolution during rheological testing. We present the first 3D data showing the evolving textural heterogeneity within a shearing magma, highlighting the dynamic changes to microstructure that occur from the initiation of shear, and the variability of the microstructural response to that shear as deformation progresses. The particular shear experiments highlighted here focus on the effect of shear on bubble coalescence with a view to shedding light on both magma transport and fragmentation processes. The XRheo system is intended to help us understand the microstructural controls on the complex and non-Newtonian evolution of magma rheology, and is therefore used to elucidate the many mobilization, transport, and eruption phenomena controlled by the rheological evolution of a multi-phase magmatic flows. The detailed, in situ characterization of sample textures presented here therefore represents the opening of a new field for the accurate parameterization of dynamic microstructural control on rheological behavior

    The Development of Metabolomic Sampling Procedures for Pichia pastoris, and Baseline Metabolome Data

    Get PDF
    Metabolic profiling is increasingly being used to investigate a diverse range of biological questions. Due to the rapid turnover of intracellular metabolites it is important to have reliable, reproducible techniques for sampling and sample treatment. Through the use of non-targeted analytical techniques such as NMR and GC-MS we have performed a comprehensive quantitative investigation of sampling techniques for Pichia pastoris. It was clear that quenching metabolism using solutions based on the standard cold methanol protocol caused some metabolite losses from P. pastoris cells. However, these were at a low level, with the NMR results indicating metabolite increases in the quenching solution below 5% of their intracellular level for 75% of metabolites identified; while the GC-MS results suggest a slightly higher level with increases below 15% of their intracellular values. There were subtle differences between the four quenching solutions investigated but broadly, they all gave similar results. Total culture extraction of cells + broth using high cell density cultures typical of P. pastoris fermentations, was an efficient sampling technique for NMR analysis and provided a gold standard of intracellular metabolite levels; however, salts in the media affected the GC-MS analysis. Furthermore, there was no benefit in including an additional washing step in the quenching process, as the results were essentially identical to those obtained just by a single centrifugation step. We have identified the major high-concentration metabolites found in both the extra- and intracellular locations of P. pastoris cultures by NMR spectroscopy and GC-MS. This has provided us with a baseline metabolome for P. pastoris for future studies. The P. pastoris metabolome is significantly different from that of Saccharomyces cerevisiae, with the most notable difference being the production of high concentrations of arabitol by P. pastoris
    corecore