504 research outputs found

    Active-distributed temperature sensing to continuously quantify vertical flow in boreholes

    Get PDF
    We show how a distributed borehole flowmeter can be created from armored Fiber Optic cables with the Active-Distributed Temperature Sensing (A-DTS) method. The principle is that in a flowing fluid, the difference in temperature between a heated and unheated cable is a function of the fluid velocity. We outline the physical basis of the methodology and report on the deployment of a prototype A-DTS flowmeter in a fractured rock aquifer. With this design, an increase in flow velocity from 0.01 to 0.3 m s−1 elicited a 2.5°C cooling effect. It is envisaged that with further development this method will have applications where point measurements of borehole vertical flow do not fully capture combined spatiotemporal dynamics

    Different frequencies of RIP among early vs. late ascospores of Neurospora crassa

    Get PDF
    We have noticed that the frequency of RIP can be quite variable, even in crosses of the same strains. One possible source of variability is the time at which ascospores are harvested. We reasoned that the earliest ascospores shot from a perithecium might contain DNA that went through relatively few mitotic divisions in pre-meiosis. RIP occurs between fertilization and premeiotic DNA synthesis (Selker et al. 1987 Cell 51:741-752). Thus, early spores might have less exposure to RIP than late spores. Since all ascospores from a perithecium are thought to arise from a single fertilization event, a minimum of 7- 10 divisions are required to account for the number of ascospores normally produced (Perkins and Barry, 1977 Adv. Genet. 211:541-544). It is likely, however, that some ascospore lineages contain fewer divisions than others

    Thermal-Plume fibre Optic Tracking (T-POT) test for flow velocity measurement in groundwater boreholes

    No full text
    International audienceWe develop an approach for measuring in-well fluid velocities using point electrical heating combined with spatially and temporally continuous temperature monitoring using Distributed Temperature Sensing (DTS). The method uses a point heater to warm a discrete volume of water. The rate of advection of this plume, once the heating is stopped, equates to the average flow velocity in the well. We conducted Thermal-Plume fibre Optic Tracking (T-POT) tests in a borehole in a fractured rock aquifer with the heater at the same depth and multiple pumping rates. Tracking of the thermal plume peak allowed the spatially varying velocity to be estimated up to 50 m downstream from the heating point, depending on the pumping rate. The T-POT technique can be used to estimate the velocity throughout long intervals provided that thermal dilution due to inflows, dispersion, or cooling by conduction do not render the thermal pulse unresolvable with DTS. A complete flow log may be obtained by deploying the heater at multiple depths, or with multiple point heaters
    • …
    corecore