15 research outputs found

    First experimental results obtained using the highpower free electron laser at the siberian center for photochemical research

    No full text
    The first lasing near the wavelength of 140 µm was achieved in April 2003 using a high-power free electron laser (FEL) constructed at the Siberian Center for Photochemical Research. In this paper we briefly describe the design of the FEL driven by an accelerator–recuperator. Characteristics of the electron beam and terahertz laser radiation, obtained in the first experiments, are also presented in the paper.У Сибірському центрі фотохімічних досліджень навесні 2003 року отримана генерація випромінювання з довжиною хвилі 140 мкм на потужному лазері на вільних електронах (ЛВЕ). У роботі коротко описана конструкція ЛВЕ на базі прискорювача рекуператора і представлені результати вимірювання деяких параметрів електронного пучка і терагерцового випромінювання.В Сибирском центре фотохимических исследований весной 2003 года получена генерация излучения с длиной волны 140 мкм на мощном лазере на свободных электронах (ЛСЭ). В работе кратко описана конструкция ЛСЭ на базе ускорителя рекуператора и представлены результаты измерения некоторых параметров электронного пучка и терагерцового излучения

    Synchronization patterns and chimera states in complex networks: Interplay of topology and dynamics

    No full text

    High Energy Physics Opportunities Using Reactor Antineutrinos

    No full text
    Nuclear reactors are uniquely powerful, abundant, and flavor-pure sources of antineutrinos that continue to play a vital role in the US neutrino physics program. The US reactor antineutrino physics community is a diverse interest group encompassing many detection technologies and many particle physics topics, including Standard Model and short-baseline oscillations, BSM physics searches, and reactor flux and spectrum modeling. The community's aims offer strong complimentary with numerous aspects of the wider US neutrino program and have direct relevance to most of the topical sub-groups composing the Snowmass 2021 Neutrino Frontier. Reactor neutrino experiments also have a direct societal impact and have become a strong workforce and technology development pipeline for DOE National Laboratories and universities. This white paper, prepared as a submission to the Snowmass 2021 community organizing exercise, will survey the state of the reactor antineutrino physics field and summarize the ways in which current and future reactor antineutrino experiments can play a critical role in advancing the field of particle physics in the next decade

    High Energy Physics Opportunities Using Reactor Antineutrinos

    No full text
    Nuclear reactors are uniquely powerful, abundant, and flavor-pure sources of antineutrinos that continue to play a vital role in the US neutrino physics program. The US reactor antineutrino physics community is a diverse interest group encompassing many detection technologies and many particle physics topics, including Standard Model and short-baseline oscillations, BSM physics searches, and reactor flux and spectrum modeling. The community's aims offer strong complimentary with numerous aspects of the wider US neutrino program and have direct relevance to most of the topical sub-groups composing the Snowmass 2021 Neutrino Frontier. Reactor neutrino experiments also have a direct societal impact and have become a strong workforce and technology development pipeline for DOE National Laboratories and universities. This white paper, prepared as a submission to the Snowmass 2021 community organizing exercise, will survey the state of the reactor antineutrino physics field and summarize the ways in which current and future reactor antineutrino experiments can play a critical role in advancing the field of particle physics in the next decade

    High Energy Physics Opportunities Using Reactor Antineutrinos

    No full text
    Nuclear reactors are uniquely powerful, abundant, and flavor-pure sources of antineutrinos that continue to play a vital role in the US neutrino physics program. The US reactor antineutrino physics community is a diverse interest group encompassing many detection technologies and many particle physics topics, including Standard Model and short-baseline oscillations, BSM physics searches, and reactor flux and spectrum modeling. The community's aims offer strong complimentary with numerous aspects of the wider US neutrino program and have direct relevance to most of the topical sub-groups composing the Snowmass 2021 Neutrino Frontier. Reactor neutrino experiments also have a direct societal impact and have become a strong workforce and technology development pipeline for DOE National Laboratories and universities. This white paper, prepared as a submission to the Snowmass 2021 community organizing exercise, will survey the state of the reactor antineutrino physics field and summarize the ways in which current and future reactor antineutrino experiments can play a critical role in advancing the field of particle physics in the next decade
    corecore