7 research outputs found

    Hydrogen storage properties of MgH2-Ni system

    Get PDF
    The effect of pure Ni addition (5 wt.%) in MgH2 powder was investigated mechanochemically for short milling times (15, 30, and 45 min). Obtained MgH2-Ni system was characterized by XRD, SEM-EDS, PSD, DSC, and TPD. Compared to pure MgH2, uniform distribution of nickel reduces the temperature of H2 desorption by more than 100 °C. It is shown that influence of two important processes, grinding and catalysis, may be followed separately. We can conclude that the catalysis of H2 desorption by Ni particles on MgH2 matrix is the dominant effect for the investigated short milling times.Twenty-First Young Researchers’ Conference - Materials Science and Engineering: Program and the Book of Abstracts; November 29 – December 1, 2023, Belgrade, Serbi

    The Catalytic Effect of Vanadium on Sorption Properties of MgH2-Based Nanocomposites Obtained Using Low Milling Time

    Get PDF
    The effects of catalysis using vanadium as an additive (2 and 5 wt.%) in a high-energy ball mill on composite desorption properties were examined. The influence of microstructure on the dehydration temperature and hydrogen desorption kinetics was monitored. Morphological and microstructural studies of the synthesized sample were performed by X-ray diffraction (XRD), laser particle size distribution (PSD), and scanning electron microscopy (SEM) methods, while differential scanning calorimetry (DSC) determined thermal properties. To further access amorph species in the milling blend, the absorption spectra were obtained by FTIR-ATR analysis (Fourier transform infrared spectroscopy attenuated total reflection). The results show lower apparent activation energy (Eapp) and H2 desorption temperature are obtained for milling bland with 5 wt.% added vanadium. The best explanation of hydrogen desorption reaction shows the Avrami-Erofeev model for parameter n = 4. Since the obtained value of apparent activation energy is close to the Mg-H bond-breaking energy, one can conclude that breaking this bond would be the rate-limiting step of the process

    Kinetic behavior of MgH2-transition metal composites: towards hydrogen storage

    Get PDF
    Hydrogen as an energy vector represents great potential, due to its high gravimetric density and low mass, as well as the fact that combustion does not emit harmful chemical byproducts. Hydrogen has the highest energy density per unit mass compared to any other fuel but a rather low energy density per unit volume. Further, hydrogen storage is a key technology for developing a hydrogen and fuel cell-based economy [1]. Metal hydrides as alternative hydrogen carriers have a wide range of performance parameters such as operating temperature, sorption kinetics, activation conditions, cyclic options, and equilibrium hydrogen pressure. These parameters can be improved or adjusted to meet the technical requirements of different applications. The most commonly used method for hydride destabilization is nanostructuring by mechanical milling which leads to a reduction in the particle and crystallite size of the MgH2 powder. Nanostructuring is often combined with catalyst addition and composite formation [2,3]. The most of research is focused on the morphological, structural, and thermodynamic effects typical for long milling times, while in this work we have followed the changes taking place under short milling times. The thermal stability of magnesium hydride is related to - changes in the crystallites and powder particle size. The analysis also considered the changes in activation energy. MgH2-M composites were prepared by mechanical milling of the as-received MgH2 powder (Alfa Aesar, 98% purity) with the addition of 2 and 5 wt.% of M (M= V, W, Mo). Mechanical milling was performed in s SPEX 5100 Mixer Mill using 8mm diameter milling ball. Samples were milled for 15-45 minutes under the inert atmosphere of argon and a ball-to-powder ratio 10:1 Figure 1. shows the kinetic curves obtained for composites with 5wt% of vanadium. To investigate the desorption process in detail, different models of solid-state kinetics were used as implemented in the code developed in our group. The ratelimiting step of the desorption reaction was determined using the iso-conversional kinetic method due to better accuracy of obtained apparent activation energies. As shown in Table 1 a decrease in apparent activation energies has been observed. It is obvious that the sorption kinetics is affected by material preparation because the reactivity of magnesium with hydrogen is strongly modified by changes in several surface parameters that govern the chemisorption, the dissociation of molecular hydrogen, and hydride nucleation7th MESC-IS 2023 : International Symposium on Materials for Energy Storage and Conversion : 11th INESS : International Conference on Nanomaterials & Adv. Energy Storage Systems : October 7-10, Baku, 2023

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Hydrogen storage properties of MgH2-Ni system

    Get PDF
    The effect of pure Ni addition (5 wt.%) in MgH2 powder was investigated mechanochemically for short milling times (15, 30, and 45 min). Obtained MgH2-Ni system was characterized by XRD, SEM-EDS, PSD, DSC, and TPD. Compared to pure MgH2, uniform distribution of nickel reduces the temperature of H2 desorption by more than 100 °C. It is shown that influence of two important processes, grinding and catalysis, may be followed separately. We can conclude that the catalysis of H2 desorption by Ni particles on MgH2 matrix is the dominant effect for the investigated short milling times

    Hydrogen storage properties of MgH2–Tm: Ni-catalysis vs. mechanical milling

    No full text
    The influence of the addition of nickel on hydrogen desorption from the MgH2–Ni composite was investigated. The composite powder was ball-milled for 15, 30 and 45 min and characterized by XRD, SEM-EDS, PSD, DSC and TPD methods. It was observed that the uniform distribution of nickel decreases hydrogen desorption temperature by more than 100 °C. A kinetic model for the hydrogen desorption process was also determined. The hydrogen desorption reaction in catalyzed samples is described by the Avrami-Erofeev model with the value of parameter n = 4. The apparent activation energy of the hydrogen desorption reaction was decreased with the increase of milling time and the addition of nickel. It has been shown for the first time that two main processes (grinding and the catalytic effect) could be separately analyzed. It is concluded that for investigated short milling times, the catalytic effect of Ni is predominant

    Bioaccumulation of Potentially Toxic Elements in <i>Tilia tomentosa</i> Moench Trees from Urban Parks and Potential Health Risks from Using Leaves and Flowers for Medicinal Purposes

    No full text
    Potentially toxic element (PTE) contamination in medicinal plants, particularly those growing in urban environments, can cause human health issues. Therefore, this study evaluated trace element accumulation and translocation patterns (As, Cr, Cu, Ni, Pb, Sr, and Zn) in the aboveground tissue of common Tilia tomentosa Moench, often used as a medicinal plant, sampled in Belgrade’s urban parks (Zemunski Park, Park Blok 63, and Park Topčider). Our results indicated that this species exhibits the ability to accumulate and translocate PTEs, particularly Cu, in its aboveground parts. It was found that the levels of Cu and Sr in flowers were within the toxic range for plants, indicating a potential risk in using T. tomentosa flowers from Park Topčider for medicinal purposes. The maximum Estimated Daily Intake of Ni from the consumption of leaves and flowers of plants growing in two parks (Zemunski Park and Park Topčider) exceeded the corresponding Provisional Tolerable Daily Intake. Additionally, the Carcinogenic Risk calculated for Cr present in flowers was above the USEPA limit (3.021 × 10−3), indicating possible adverse effects on human health and a carcinogenic risk from ingesting tea prepared from T. tomentosa flowers from Park Topčider. Our research underlines how crucial it is to cautiously use medicinal tree species growing in urban parks in residential areas
    corecore