12 research outputs found

    A general method for calculating the optimal leaf longevity from the viewpoint of carbon economy

    Get PDF
    According to the viewpoint of the optimal strategy theory, a tree is expected to shed its leaves when they no longer contribute to maximisation of net carbon gain. Several theoretical models have been proposed in which a tree was assumed to strategically shed an old deteriorated leaf to develop a new leaf. We mathematically refined an index used in a previous theoretical model [Kikuzawa (Am Nat 138:1250-1263, 1991)] so that the index is exactly proportional to a tree's lifelong net carbon gain. We also incorporated a tree's strategy that determines the timing of leaf expansion, and examined three kinds of strategies. Specifically, we assumed that a new leaf is expanded (1) immediately after shedding of an old leaf, (2) only at the beginning of spring, or (3) immediately after shedding of an old leaf if the shedding occurs during a non-winter season and at the beginning of spring otherwise. We derived a measure of optimal leaf longevity maximising the value of an appropriate index reflecting total net carbon gain and show that use of this index yielded results that are qualitatively consistent with empirical records. The model predicted that expanding a new leaf at the beginning of spring than immediately after shedding usually yields higher carbon gain, and combined strategy of the immediate replacement and the spring flushing earned the highest gain. In addition, our numerical analyses suggested that multiple flushing seen in a few species of subtropical zones can be explained in terms of carbon economy

    Continuous dynamic adjustment of the plant circadian oscillator.

    No full text
    The clockwork of plant circadian oscillators has been resolved through investigations in Arabidopsis thaliana. The circadian oscillator is an important regulator of much of plant physiology, though many of the mechanisms are unclear. New findings demonstrate that the oscillator adjusts phase and period in response to abiotic and biotic signals, providing insight in to how the plant circadian oscillator integrates with the biology of the cell and entrains to light, dark and temperature cycles. We propose that the plant circadian oscillator is dynamically plastic, in constant adjustment, rather than being an isolated clock impervious to cellular events

    H3K27me3 demethylases alter HSP22 and HSP17.6C expression in response to recurring heat in Arabidopsis

    No full text
    Acclimation to high temperature increases tolerance of heat shock in plants. Here the authors show that JUMONJI H3K27me3 demethylases are needed for heat acclimation in Arabidopsis and act at loci encoding HEAT SHOCK PROTEINS to facilitate induction upon heat stress
    corecore