8 research outputs found

    Reconstitution of Mouse Spermatogonial Stem Cell Niches in Culture

    Get PDF
    SummarySpermatogonial stem cells (SSCs) reside in specific niches within seminiferous tubules. These niches are thought to secrete chemotactic factors for SSCs, because SSCs migrate to them upon transplantation. However, the identity of these chemotactic molecules remains unknown. Here, we established a testis feeder cell culture system and used it to identify SSC chemotactic factors. When seeded on testis cells from infertile mice, SSCs migrated beneath the Sertoli cells and formed colonies with a cobblestone appearance that were very similar to those produced by hematopoietic stem cells. Cultured cells maintained SSC activity and fertility for at least 5 months. Cobblestone colony formation depended on GDNF and CXCL12, and dominant-negative GDNF receptor transfection or CXCL12 receptor deficiency reduced SSC colonization. Moreover, GDNF upregulated CXCL12 receptor expression, and CXCL12 transfection in Sertoli cells increased homing efficiency. Overall, our findings identify GDNF and CXCL12 as SSC chemotactic factors in vitro and in vivo

    Phenotypic Plasticity of Mouse Spermatogonial Stem Cells

    Get PDF
    BACKGROUND:Spermatogonial stem cells (SSCs) continuously undergo self-renewal division to support spermatogenesis. SSCs are thought to have a fixed phenotype, and development of a germ cell transplantation technique facilitated their characterization and prospective isolation in a deterministic manner; however, our in vitro SSC culture experiments indicated heterogeneity of cultured cells and suggested that they might not follow deterministic fate commitment in vitro. METHODOLOGY AND PRINCIPAL FINDINGS:In this study, we report phenotypic plasticity of SSCs. Although c-kit tyrosine kinase receptor (Kit) is not expressed in SSCs in vivo, it was upregulated when SSCs were cultured on laminin in vitro. Both Kit(-) and Kit(+) cells in culture showed comparable levels of SSC activity after germ cell transplantation. Unlike differentiating spermatogonia that depend on Kit for survival and proliferation, Kit expressed on SSCs did not play any role in SSC self-renewal. Moreover, Kit expression on SSCs changed dynamically once proliferation began after germ cell transplantation in vivo. CONCLUSIONS/SIGNIFICANCE:These results indicate that SSCs can change their phenotype according to their microenvironment and stochastically express Kit. Our results also suggest that activated and non-activated SSCs show distinct phenotypes
    corecore