5,342 research outputs found

    Dynamical Evolution of Galaxies in Clusters

    Get PDF
    Tidal forces acting on galaxies in clusters lead to a strong dynamical evolution. In order to quantify the amount of evolution, I run self-consistent N-body simulations of disk galaxies for a variety of models in the hierarchically forming clusters. The tidal field along the galactic orbits is extracted from the simulations of cluster formation in the Omega_0=1; Omega_0=0.4; and Omega_0=0.4, Omega_Lambda=0.6 cosmological scenarios. For large spiral galaxies with the rotation speed of 250 km/s, tidal interactions truncate massive dark matter halos at 30 +- 6 kpc, and thicken stellar disks by a factor 2 to 3, increasing Toomre's parameter to Q > 2 and halting star formation. Low density galaxies, such as the dwarf spheroidals with the circular velocity of 20 km/s and the extended low surface brightness galaxies with the scale length of 10-15 kpc, are completely disrupted by tidal shocks. Their debris contribute to the diffuse intracluster light. The tidal effects are significant not only in the core but throughout the cluster and can be parametrized by the critical tidal density. The tidally-induced evolution results in the transformation of the infalling spirals into S0 galaxies and in the depletion of the LSB population. In the low Omega_0 cosmological models, clusters form earlier and produce stronger evolution of galaxies.Comment: accepted to Ap

    Tubular structures of GaS

    Get PDF
    In this Brief Report we demonstrate, using density-functional tight-binding theory, that gallium sulfide (GaS) tubular nanostructures are stable and energetically viable. The GaS-based nanotubes have a semiconducting direct gap which grows towards the value of two-dimensional hexagonal GaS sheet and is in contrast to carbon nanotubes largely independent of chirality. We further report on the mechanical properties of the GaS-based nanotubes

    Lithium distribution in structured graphite anodes investigated by laser-induced breakdown spectroscopy

    Get PDF
    For the development of thick film graphite electrodes, a 3D battery concept is applied, which significantly improves lithium-ion diffusion kinetics, high-rate capability, and cell lifetime and reduces mechanical tensions. Our current research indicates that 3D architectures of anode materials can prevent cells from capacity fading at high C-rates and improve cell lifespan. For the further research and development of 3D battery concepts, it is important to scientifically understand the influence of laser-generated 3D anode architectures on lithium distribution during charging and discharging at elevated C-rates. Laser-induced breakdown spectroscopy (LIBS) is applied post-mortem for quantitatively studying the lithium concentration profiles within the entire structured and unstructured graphite electrodes. Space-resolved LIBS measurements revealed that less lithium-ion content could be detected in structured electrodes at delithiated state in comparison to unstructured electrodes. This result indicates that 3D architectures established on anode electrodes can accelerate the lithium-ion extraction process and reduce the formation of inactive materials during electrochemical cycling. Furthermore, LIBS measurements showed that at high C-rates, lithium-ion concentration is increased along the contour of laser-generated structures indicating enhanced lithium-ion diffusion kinetics for 3D anode materials. This result is correlated with significantly increased capacity retention. Moreover, the lithium-ion distribution profiles provide meaningful information about optimizing the electrode architecture with respect to film thickness, pitch distance, and battery usage scenari

    Organizational Influences on Interdisciplinary Interactions during Research and Design of Large-Scale Complex Engineered Systems

    Get PDF
    The design of large-scale complex engineered systems (LaCES) such as an aircraft is inherently interdisciplinary. Multiple engineering disciplines, drawing from a team of hundreds to thousands of engineers and scientists, are woven together throughout the research, development, and systems engineering processes to realize one system. Though research and development (R&D) is typically focused in single disciplines, the interdependencies involved in LaCES require interdisciplinary R&D efforts. This study investigates the interdisciplinary interactions that take place during the R&D and early conceptual design phases in the design of LaCES. Our theoretical framework is informed by both engineering practices and social science research on complex organizations. This paper provides preliminary perspective on some of the organizational influences on interdisciplinary interactions based on organization theory (specifically sensemaking), data from a survey of LaCES experts, and the authors experience in the research and design. The analysis reveals couplings between the engineered system and the organization that creates it. Survey respondents noted the importance of interdisciplinary interactions and their significant benefit to the engineered system, such as innovation and problem mitigation. Substantial obstacles to interdisciplinarity are uncovered beyond engineering that include communication and organizational challenges. Addressing these challenges may ultimately foster greater efficiencies in the design and development of LaCES and improved system performance by assisting with the collective integration of interdependent knowledge bases early in the R&D effort. This research suggests that organizational and human dynamics heavily influence and even constrain the engineering effort for large-scale complex systems

    Dynamics of orientational ordering in fluid membranes

    Get PDF
    We study the dynamics of orientational phase ordering in fluid membranes. Through numerical simulation we find an unusually slow coarsening of topological texture, which is limited by subdiffusive propagation of membrane curvature. The growth of the orientational correlation length ξ\xi obeys a power law ξtw\xi \propto t^w with w<1/4w < 1/4 in the late stage. We also discuss defect profiles and correlation patterns in terms of long-range interaction mediated by curvature elasticity.Comment: 5 pages, 3 figures (1 in color); Eq.(9) correcte

    Non-spherical shapes of capsules within a fourth-order curvature model

    Get PDF
    We minimize a discrete version of the fourth-order curvature based Landau free energy by extending Brakke's Surface Evolver. This model predicts spherical as well as non-spherical shapes with dimples, bumps and ridges to be the energy minimizers. Our results suggest that the buckling and faceting transitions, usually associated with crystalline matter, can also be an intrinsic property of non-crystalline membranes.Comment: 6 pages, 4 figures (LaTeX macros EPJ), accepted for publication in EPJ

    Fission of a multiphase membrane tube

    Get PDF
    A common mechanism for intracellular transport is the use of controlled deformations of the membrane to create spherical or tubular buds. While the basic physical properties of homogeneous membranes are relatively well-known, the effects of inhomogeneities within membranes are very much an active field of study. Membrane domains enriched in certain lipids in particular are attracting much attention, and in this Letter we investigate the effect of such domains on the shape and fate of membrane tubes. Recent experiments have demonstrated that forced lipid phase separation can trigger tube fission, and we demonstrate how this can be understood purely from the difference in elastic constants between the domains. Moreover, the proposed model predicts timescales for fission that agree well with experimental findings

    Age spread in Galactic star forming region W3 Main

    Full text link
    We present near-infrared JHKs imaging as well as K-band multi-object spectroscopy of the massive stellar content of W3 Main using LUCI at the LBT. We confirm 13 OB stars by their absorption line spectra in W3 Main and spectral types between O5V and B4V have been found. Three massive Young Stellar Objects are identified by their emission line spectra and near-infrared excess. From our spectrophotometric analysis of the massive stars and the nature of their surrounding HII regions we derive the evolutionary sequence of W3 Main and we find an age spread of 2-3 Myr.Comment: 4 pages, 2 figures, To appear in conference proceedings of "370 years of Astronomy in Utrecht
    corecore