2,310 research outputs found

    Concurrent optimization of airframe and engine design parameters

    Get PDF
    An integrated system for the multidisciplinary analysis and optimization of airframe and propulsion design parameters is being developed. This system is known as IPAS, the Integrated Propulsion/Airframe Analysis System. The traditional method of analysis is one in which the propulsion system analysis is loosely coupled to the overall mission performance analysis. This results in a time consuming iterative process. First, the engine is designed and analyzed. Then, the results from this analysis are used in a mission analysis to determine the overall aircraft performance. The results from the mission analysis are used as a guide as the engine is redesigned and the entire process repeated. In IPAS, the propulsion system, airframe, and mission are closely coupled. The propulsion system analysis code is directly integrated into the mission analysis code. This allows the propulsion design parameters to be optimized along with the airframe and mission design parameters, significantly reducing the time required to obtain an optimized solution

    Supersonic Technology Concept Aeroplanes for Environmental Studies

    Get PDF
    The International Civil Aviation Organization is considering new environmental standards for future supersonic civil aircraft. NASA is supporting this effort by analyzing several notional, near-term supersonic transports. NASAs performance, noise, and exhaust emission predictions for these transports are being used to inform a larger study that will determine the global environmental and economic impact of adding supersonic aircraft to the fleet beginning this decade. A supersonic business jet with a maximum takeoff gross weight of 55 tonnes is the focus of this paper. A smaller business jet weighing 45 tonnes is also discussed. Both airplanes use supersonic engines derived from a common contemporary commercial subsonic turbofan core. Aircraft performance, airport-vicinity noise, and exhaust emissions are predicted using NASA tools. Also investigated are some of the anticipated behaviors and requirements of these aircraft in the commercial airspace. The sensitivity of noise to system uncertainties is presented and alternative engine studies are discussed

    A Multidisciplinary Approach to Mixer-Ejector Analysis and Design

    Get PDF
    The design of an engine for a civil supersonic aircraft presents a difficult multidisciplinary problem to propulsion system engineers. There are numerous competing requirements for the engine, such as to be efficient during cruise while yet quiet enough at takeoff to meet airport noise regulations. The use of mixer-ejector nozzles presents one possible solution to this challenge. However, designing a mixer-ejector which will successfully address both of these concerns is a difficult proposition. Presented in this paper is an integrated multidisciplinary approach to the analysis and design of these systems. A process that uses several low-fidelity tools to evaluate both the performance and acoustics of mixer-ejectors nozzles is described. This process is further expanded to include system-level modeling of engines and aircraft to determine the effects on mission performance and noise near airports. The overall process is developed in the OpenMDAO framework currently being developed by NASA. From the developed process, sample results are given for a notional mixer-ejector design, thereby demonstrating the capabilities of the method

    Assessment of Mixer-Ejector Nozzle with Thermal Acoustic Shield for Jet Noise Reduction

    Get PDF
    A tendency for excessive exhaust jet mixing noise from low bypass ratio turbofan engines is recognized as a key challenge in the design of commercial supersonic aircraft. In this work we investigate a unique combination of two noise mitigation methods as a novel strategy to reduce jet mixing noise. First, a thermal acoustic shield (TAS) is used to reflect high frequency acoustic waves at small angles to the jet axis; second, a mixer-ejector (ME) nozzle is used to mechanically shield noise propagating at large angles to the axis. The ME shroud also provides a convenient location for a TAS nozzle and improves TAS effectiveness by limiting the downstream extent of high frequency noise generation. In an additional benefit for a velocity-matched TAS stream, the ME allows a reduction in strength of the TAS outer shear layer which could serve as a secondary noise source. The present work provides a quantitative assessment of the ME-TAS concept, using a combination of RANS CFD simulations, acoustic analogy calculations for the farfield Green's function, and surrogate-based modeling and parameter space exploration. We first evaluate a subscale configuration, then use scaling arguments to apply subscale results to the systems-level analysis of a flight configuration; the latter configuration includes a generic low bypass ratio turbofan engine with an engine-driven electric generator for supplementary heating of the TAS stream. Additional RANS CFD calculations are performed for a notional ME-TAS geometry based on the full scale configuration, and various modeling assumptions and operational characteristics are evaluated. The ME-TAS concept is shown to provide effective shielding for high frequency jet noise, and should enable comparable noise suppression to a stand-alone ME of considerably greater length, weight and drag. In addition to investigating the integrated ME-TAS system, the present work differs from previous research into TAS and related fluidic shield concepts through the inclusion of modern numerical analysis tools and the systematic numerical examination of various design parameters

    NASA's Pursuit of Low-Noise Propulsion for Low-Boom Commercial Supersonic Vehicles

    Get PDF
    Since 2006, when the Fundamental Aeronautics Program was instituted within NASA's Aeronautics Mission Directorate, there has been a Project looking at the technical barriers to commercial supersonic flight. Among the barriers is the noise produced by aircraft during landing and takeoff. Over the years that followed, research was carried out at NASA aeronautics research centers, often in collaboration with academia and industry, addressing the problem. In 2013, a high-level milestone was established, described as a Technical Challenge, with the objective of demonstrating the feasibility of a low-boom supersonic airliner that could meet current airport noise regulations. The Technical Challenge was formally called "Low Noise Propulsion for Low Boom Aircraft", and was completed in late 2016. This paper reports the technical findings from this Technical Challenge, reaching back almost 10 years to review the technologies and tools that were developed along the way. It also discusses the final aircraft configuration and propulsion systems required for a supersonic civilian aircraft to meet noise regulations using the technologies available today. Finally, the paper documents the model-scale tests that validated the acoustic performance of the study aircraft

    An Introduction to Transient Engine Applications Using the Numerical Propulsion System Simulation (NPSS) and MATLAB

    Get PDF
    This document outlines methodologies designed to improve the interface between the Numerical Propulsion System Simulation framework and various control and dynamic analyses developed in the Matlab and Simulink environment. Although NPSS is most commonly used for steady-state modeling, this paper is intended to supplement the relatively sparse documentation on it's transient analysis functionality. Matlab has become an extremely popular engineering environment, and better methodologies are necessary to develop tools that leverage the benefits of these disparate frameworks. Transient analysis is not a new feature of the Numerical Propulsion System Simulation (NPSS), but transient considerations are becoming more pertinent as multidisciplinary trade-offs begin to play a larger role in advanced engine designs. This paper serves to supplement the relatively sparse documentation on transient modeling and cover the budding convergence between NPSS and Matlab based modeling toolsets. The following sections explore various design patterns to rapidly develop transient models. Each approach starts with a base model built with NPSS, and assumes the reader already has a basic understanding of how to construct a steady-state model. The second half of the paper focuses on further enhancements required to subsequently interface NPSS with Matlab codes. The first method being the simplest and most straightforward but performance constrained, and the last being the most abstract. These methods aren't mutually exclusive and the specific implementation details could vary greatly based on the designer's discretion. Basic recommendations are provided to organize model logic in a format most easily amenable to integration with existing Matlab control toolsets

    Advanced Noise Abatement Procedures for a Supersonic Business Jet

    Get PDF
    Supersonic civil aircraft present a unique noise certification challenge. High specific thrust required for supersonic cruise results in high engine exhaust velocity and high levels of jet noise during takeoff. Aerodynamics of thin, low-aspect-ratio wings equipped with relatively simple flap systems deepen the challenge. Advanced noise abatement procedures have been proposed for supersonic aircraft. These procedures promise to reduce airport noise, but they may require departures from normal reference procedures defined in noise regulations. The subject of this report is a takeoff performance and noise assessment of a notional supersonic business jet. Analytical models of an airframe and a supersonic engine derived from a contemporary subsonic turbofan core are developed. These models are used to predict takeoff trajectories and noise. Results indicate advanced noise abatement takeoff procedures are helpful in reducing noise along lateral sidelines

    Perceived Noise Analysis for Offset Jets Applied to Commercial Supersonic Aircraft

    Get PDF
    A systems analysis was performed with experimental jet noise data, engineaircraft performance codes and aircraft noise prediction codes to assess takeoff noise levels and mission range for conceptual supersonic commercial aircraft. A parametric study was done to identify viable engine cycles that meet NASAs N+2 goals for noise and performance. Model scale data from offset jets was used as input to the aircraft noise prediction code to determine the expected sound levels for the lateral certification point where jet noise dominates over all other noise sources. The noise predictions were used to determine the optimal orientation of the offset nozzles to minimize the noise at the lateral microphone location. An alternative takeoff procedure called programmed lapse rate was evaluated for noise reduction benefits. Results show there are two types of engines that provide acceptable range performance; one is a standard mixed-flow turbofan with a single-stage fan, and the other is a three-stream variable-cycle engine with a multi-stage fan. The engine with a single-stage fan has a lower specific thrust and is 8 to 10 EPNdB quieter for takeoff. Offset nozzles reduce the noise directed toward the thicker side of the outer flow stream, but have less benefit as the core nozzle pressure ratio is reduced and the bypass-to-core area ratio increases. At the systems level for a three-engine N+2 aircraft with full throttle takeoff, there is a 1.4 EPNdB margin to Chapter 3 noise regulations predicted for the lateral certification point (assuming jet noise dominates). With a 10 reduction in thrust just after takeoff rotation, the margin increases to 5.5 EPNdB. Margins to Chapter 4 and Chapter 14 levels will depend on the cumulative split between the three certification points, but it appears that low specific thrust engines with a 10 reduction in thrust (programmed lapse rate) can come close to meeting Chapter 14 noise levels. Further noise reduction is possible with additional reduction in takeoff thrust using programmed lapse rate, but studies are needed to investigate the practical limits for safety and takeoff regulations

    A NASA Lewis comparative propulsion system assessment for the High-Speed Civil Transport

    Get PDF
    The topics covered include the following: High Speed Research (HSR) Propulsion System Studies; HRS System Study flowpath; design point aircraft sizing - no noise constraint; impact of noise constraint; noise impact on aircraft size; takeoff gross weight assessment; impact of High Speed Civil Transport (HSCT) high-altitude flyover noise; HSR NO(x) reduction status; current assessment of HSCT ozone depletion; influence of non-optimum cruise altitude on range; and influence of subsonic leg on range
    corecore